Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A new machine-learning model to partition soil organic carbon into its centennially stable and active fractions based on Rock-Eval(r) thermal analysis

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire de géologie de l'ENS (LGENS); Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris; École normale supérieure - Paris (ENS-PSL); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL); Fractionnement des AgroRessources et Environnement (FARE); Université de Reims Champagne-Ardenne (URCA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE); Ministère de l'Agriculture et de la Souveraineté Alimentaire (MASA); Institut des Sciences de la Terre de Paris (iSTeP); Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS); Swedish University of Agricultural Sciences = Sveriges lantbruksuniversitet (SLU); Aarhus University, Department of Agroecology - Soil Fertility; Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS); AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE); Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ); Instituto Nacional de Tecnología Agropecuaria (INTA); Ecologie fonctionnelle et biogéochimie des sols et des agro-écosystèmes (UMR Eco&Sols); Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro); CNRS-INRAE ”IMMORTAL” project; European Geosciences Union
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2024
    • الموضوع:
    • نبذة مختصرة :
      International audience ; The quantification of soil organic carbon (SOC) biogeochemical stability is important for assessing soil health and its capacity to store carbon. Models simulating SOC stock evolution divide SOC into different kinetic pools with contrasting residence times. The initialization of compartment sizes is a major source of uncertainty for SOC simulations. In a previous study, Cécillon et al. (2021) developed a machine-learning model (PARTYsoc v2) that uses Rock-Eval(r) thermal analysis results as input variables to quantify the proportion of centennially stable and active SOC fractions using samples from long term bare fallow sites. The outputs of PARTYsoc v2 have been shown to be particularly effective for initializing the AMG model, enabling very accurate simulations of SOC stock evolutions for a dozen French sites (Kanari et al., 2022). The objective of the present work is to build a new version of PARTYsoc, validated on a larger sample set, and extend the usefulness of the AMG model initialized with PARTYsoc to different parts of the world. To do so, we have first identified sites with known crop yields and SOC stock evolutions and archived samples available for Rock-Eval(r) characterization. We then determined, for each site, the stable SOC stock value leading to the best simulation accuracy of SOC stock evolution with the AMG model. This optimal stable SOC stock allowed us to quantify the stable SOC proportion for all samples from the selected sites. Finally, we developed PARTYsoc v3 using Rock-Eval(r) measurements as input variables to predict stable SOC proportions sensu AMG model. PARTYsoc v3 is significantly different from PARTYsoc v2. In the v3, the target variable, i.e., the centennially stable SOC proportion, is determined to be optimal for the AMG model whereas in the v2 it was calculated from SOC declines at bare fallow sites. Moreover, the current v3 model uses Support Vector Machine (SVM) regression coupled with a Beta Regression instead of Random Forest. This combination of ...
    • Relation:
      hal-04612125; https://hal.inrae.fr/hal-04612125; https://hal.inrae.fr/hal-04612125/document; https://hal.inrae.fr/hal-04612125/file/EGU_PARTYsoc_2024.pdf
    • الرقم المعرف:
      10.5194/egusphere-egu24-11107
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.646BCBAB