Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Ultrafast Charge Carrier Dynamics in InP/ZnSe/ZnS Core/Shell/Shell Quantum Dots

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Multidisciplinary Digital Publishing Institute
    • الموضوع:
      2022
    • Collection:
      MDPI Open Access Publishing
    • نبذة مختصرة :
      The excellent performance of InP/ZnSe/ZnS core/shell/shell quantum dots (CSS-QDs) in light-emitting diodes benefits from the introduction of a ZnSe midshell. Understanding the changes of ultrafast carrier dynamics caused by the ZnSe midshell is important for their optoelectronic applications. Herein, we have compared the ultrafast carrier dynamics in CSS-QDs and InP/ZnS core/shell QDs (CS-QDs) using femtosecond transient absorption spectroscopy. The results show that the ZnSe midshell intensifies the electron delocalization and prolongs the in-band relaxation time of electrons from 238 fs to 350 fs, and that of holes from hundreds of femtoseconds to 1.6 ps. We also found that the trapping time caused by deep defects increased from 25.6 ps to 76 ps, and there were significantly reduced defect emissions in CSS-QDs. Moreover, the ZnSe midshell leads to a significantly increased density of higher-energy hole states above the valence band-edge, which may reduce the probability of Auger recombination caused by the positive trion. This work enhances our understanding of the excellent performance of the CSS-QDs applied to light-emitting diodes, and is likely to be helpful for the further optimization and design of optoelectronic devices based on the CSS-QDs.
    • File Description:
      application/pdf
    • Relation:
      Physical Chemistry at Nanoscale; https://dx.doi.org/10.3390/nano12213817
    • الرقم المعرف:
      10.3390/nano12213817
    • الدخول الالكتروني :
      https://doi.org/10.3390/nano12213817
    • Rights:
      https://creativecommons.org/licenses/by/4.0/
    • الرقم المعرف:
      edsbas.6294C19