Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Explicit lower bounds for the height in Galois extensions of number fields

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Institut Fourier (IF); Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
    • بيانات النشر:
      HAL CCSD
      Société Arithmétique de Bordeaux
    • الموضوع:
      2024
    • Collection:
      Université Grenoble Alpes: HAL
    • نبذة مختصرة :
      International audience ; Amoroso and Masser proved that for every real ϵ > 0, there is a constant c(ϵ) > 0, with the property that, for every algebraic number α such that Q(α)/Q is a Galois extension, the height of α is either 0 or at least c(ϵ)[Q(α) : Q]-ϵ. In this article, we establish an explicit version of this theorem.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2402.04908; ARXIV: 2402.04908
    • الدخول الالكتروني :
      https://hal.science/hal-04475302
      https://hal.science/hal-04475302v2/document
      https://hal.science/hal-04475302v2/file/Height_of_generator_of_galois_extension_version_finale.pdf
    • Rights:
      http://hal.archives-ouvertes.fr/licences/publicDomain/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.61A1B55