Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Second order local minimal-time Mean Field Games

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)); Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité); Dynamical Interconnected Systems in COmplex Environments (DISCO); Inria Saclay - Ile de France; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire des signaux et systèmes (L2S); CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS); Laboratoire des signaux et systèmes (L2S); CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS); Institut Camille Jordan (ICJ); École Centrale de Lyon (ECL); Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS); Modélisation mathématique, calcul scientifique (MMCS); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL); Public grant as part of the ``Investissement d'avenir'' project, reference ANR-11-LABX-0056-LMH, LabEx LMH, PGMO project VarPDEMFG.; French IDEXLYON project Impulsion ``Optimal Transport and Congestion Games'' PFI 19IA106udl.; Hadamard Mathematics LabEx (LMH), grant number ANR-11-LABX-0056-LMH in the ``Investissement d'avenir'' project.; ANR-16-CE40-0015,MFG,Jeux Champs Moyen(2016); ANR-11-LABX-0056,LMH,LabEx Mathématique Hadamard(2011)
    • بيانات النشر:
      HAL CCSD
      Springer Verlag
    • الموضوع:
      2022
    • Collection:
      Université Jean Monnet – Saint-Etienne: HAL
    • نبذة مختصرة :
      International audience ; The paper considers a forward-backward system of parabolic PDEs arising in a Mean Field Game (MFG) model where every agent controls the drift of a trajectory subject to Brownian diffusion, trying to escape a given bounded domain $\Omega$ in minimal expected time. Agents are constrained by a bound on the drift depending on the density of other agents at their location. Existence for a finite time horizon $T$ is proven via a fixed point argument, but the natural setting for this problem is in infinite time horizon. Estimates are needed to treat the limit $T\to\infty$, and the asymptotic behavior of the solution obtained in this way is also studied. This passes through classical parabolic arguments and specific computations for MFGs. Both the Fokker--Planck equation on the density of agents and the Hamilton--Jacobi--Bellman equation on the value function display Dirichlet boundary conditions as a consequence of the fact that agents stop as soon as they reach $\partial\Omega$. The initial datum for the density is given, and the long-time limit of the value function is characterized as the solution of a stationary problem.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2005.11928; hal-02616965; https://hal.science/hal-02616965; https://hal.science/hal-02616965v3/document; https://hal.science/hal-02616965v3/file/StochasticMFG.pdf; ARXIV: 2005.11928
    • الرقم المعرف:
      10.1007/s00030-022-00767-2
    • الدخول الالكتروني :
      https://hal.science/hal-02616965
      https://hal.science/hal-02616965v3/document
      https://hal.science/hal-02616965v3/file/StochasticMFG.pdf
      https://doi.org/10.1007/s00030-022-00767-2
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.6080A3B9