Contributors: University of Minnesota Twin Cities (UMN); University of Minnesota System (UMN); Department of Dermatology; Université de Lausanne = University of Lausanne (UNIL); Stem Cell Institut, McGuire Translational Research Facility, University of Minnesota; Singapore Bioimaging Consortium Singapore (SBIC); Agency for science, technology and research Singapore (A*STAR); Department of Neuroscience, Medical School, University of Minnesota; Nanyang Technological University Singapour (NTU); ToxAlim (ToxAlim); Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT); Institut National Polytechnique (Toulouse) (Toulouse INP); Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP); Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN); Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE); Center for integrative genomics, University of Lausanne; The Agency for Science, Technology and Research (A*STAR), Singapore.; The Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
نبذة مختصرة : International audience ; The recent emphasis on circadian rhythmicity in critical skin cell functions related to homeostasis, regeneration and aging has shed light on the importance of the PER2 circadian clock gene as a vital antitumor gene. Furthermore, delta-opioid receptors (DOPrs) have been identified as playing a crucial role in skin differentiation, proliferation and migration, which are not only essential for wound healing but also contribute to cancer development. In this study, we propose a significant association between cutaneous opioid receptor (OPr) activity and circadian rhythmicity. To investigate this link, we conducted a 48 h circadian rhythm experiment, during which RNA samples were collected every 5 h. We discovered that the activation of DOPr by its endogenous agonist Met-Enkephalin in N/TERT-1 keratinocytes, synchronized by dexamethasone, resulted in a statistically significant 5.6 h delay in the expression of the core clock gene PER2. Confocal microscopy further confirmed the simultaneous nuclear localization of the DOPr-β-arrestin-1 complex.Additionally, DOPr activation not only enhanced but also induced a phase shift in the rhythmic binding of β-arrestin-1 to the PER2 promoter. Furthermore, we observed that β-arrestin-1 regulates the transcription of its target genes, including PER2, by facilitating histone-4 acetylation. Through the ChIP assay, we determined that Met-Enkephalin enhances β-arrestin-1 binding to acetylated H4 in the PER2 promoter. In summary, our findings suggest that DOPr activation leads to a phase shift in PER2 expression via β-arrestin-1-facilitated chromatin remodeling. Consequently, these results indicate that DOPr, much like its role in wound healing, may also play a part in cancer development by influencing PER2.
No Comments.