نبذة مختصرة : We discuss how the Fast Multipole Method (FMM) applied to a boundary concentrated mesh can be used to evaluate volume potentials that arise in the boundary element method. If $h$ is the meshwidth near the boundary, then the algorithm can compute the potential in nearly $\Ord(h^{-2})$ operations while maintaining an $\Ord(h^p)$ convergence of the error. The effectiveness of the algorithms are demonstrated by solving boundary integral equations of the Poisson equation.
No Comments.