Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

‘Overcoming the Bottleneck’: Knowledge Architectures for Genomic Data Interpretation in Oncology

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      McGill University = Université McGill Montréal, Canada; University of Quebec at Montreal, Montreal, Quebec, Canada; Université du Québec à Montréal = University of Québec in Montréal (UQAM); Anthropologie bio-culturelle, Droit, Ethique et Santé (ADES); Aix Marseille Université (AMU)-EFS ALPES MEDITERRANEE-Centre National de la Recherche Scientifique (CNRS); “Cancer, Biomedicine & Society” group (SESSTIM - U1252 INSERM - AMU - UMR 259 IRD); Sciences Economiques et Sociales de la Santé & Traitement de l'Information Médicale (SESSTIM - U1252 INSERM - Aix Marseille Univ - UMR 259 IRD); Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2020
    • Collection:
      Aix-Marseille Université: HAL
    • نبذة مختصرة :
      International audience ; In recent years, oncology transitioned from its traditional, organ-based approach to 'precision oncology' centered on molecular alterations. As a result, it has become to a significant extent a 'data-centric' domain. Its practices increasingly rely on a sophisticated techno-scientific infrastructure that generates massive amounts of data in need of consistent, appropriate interpretations. Attempts to overcome the interpretation bottleneck have led to the establishment of a complex landscape of interrelated resources that, while displaying distinct characteristics and design choices, also entertain horizontal and vertical relations. Although there is no denying that the data-centric nature of contemporary oncology raises a number of key issues related to the production and circulation of data, we suggest that the focus on data use and re-use should be complemented by a focus on interpretation. Oncology practitioners refer to data interpretation resources as 'knowledgebases', an actor's category designed to differentiate them from generic, multipurpose databases. Their major purpose is the definition and identification of clinically actionable alterations. A heavy investment in human curation, of a clinical rather than exclusively scientific nature is needed to make them valuable, but each knowledgebase
    • Relation:
      hal-03192959; https://amu.hal.science/hal-03192959; https://amu.hal.science/hal-03192959/document; https://amu.hal.science/hal-03192959/file/Cambrosio2020_Chapter_OvercomingTheBottleneckKnowled.pdf
    • الرقم المعرف:
      10.1007/978-3-030-37177-7_16
    • الدخول الالكتروني :
      https://amu.hal.science/hal-03192959
      https://amu.hal.science/hal-03192959/document
      https://amu.hal.science/hal-03192959/file/Cambrosio2020_Chapter_OvercomingTheBottleneckKnowled.pdf
      https://doi.org/10.1007/978-3-030-37177-7_16
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.5EC60C72