نبذة مختصرة : This research shows the adsorbent potential of corncobs in the removal of the anionic bright blue colorant on packed beds. It was evaluated the effect of pH parameters from this medium, particle size, saline presence and column height. The samples were analyzed by defined intervals of time. The colorant quantity removed was quantified by means of ultraviolet-visible spectroscopy. Models of Adams-Bohart, Thomas and Yoon-Nelson were used to predict the breakthrough curves using nonlinear regression and so set the characteristic parameters of the process. BDST model was used to express the influence of bed height into the breakthrough curve. It was found that acid pH (pH = 2.0) smaller particle size (0.3 mm < x < 0.5 mm) and larger bed height (Z = 20 cm) favor the transfer of colorant to the adsorbent material, reaching greater retention of bright blue on the corncob. The presence of NaCl in the solution reduces the efficiency of adsorption. In terms of models, the Thomas model presented the best setting for the description of the breakthrough curve to the experimental conditions (R2 = 0.93 -0.94), while Adams-Bohart model offered a good fit (R2 = 0.96-0.99) for the dynamic behavior limited to the initial part of the process. Yoon-Nelson model presented a considerable drift between the experimental data and the predicted data. Finally, the BDST model showed a good correlation, R2 = 0.92 -0.99, establishing that the height is a determining factor for scaling of process ; Esta investigación muestra el potencial adsorbente de la tuza de maíz en la remoción del colorante aniónico azul brillante sobre lechos empacados. Se evaluó efecto de los parámetros pH del medio, tamaño de partícula, presencia salina y altura de columna. Las muestras fueron analizadas a intervalos definidos de tiempo. La cantidad del colorante removido fue cuantificada por medio de espectroscopia Ultravioleta – Visible. Los modelos de Adams-Bohart, Thomas y Yoon-Nelson fueron utilizados para predecir las curvas de ruptura usando regresión no ...
Relation: http://hemeroteca.unad.edu.co/index.php/riaa/article/view/911/904; Ascu, Z. & Isoglu, I. (2006). Use of agricultural waste sugar beet pulp for the removal of Gemazol turquoise blue-G reactive dye from aqueous solution. Journal of Hazardous Materials, B137, 418-430.; Auxilio, A., Andrews, P., Junk, P., Spiccia, L., Neumann, D., Raverty, D. & Vanderhoek, N. (2007). Adsorption and intercalation of Acid Blue 9 on Mg–Al layered double hydroxides of variable metal composition. Polyhedron, 26, 3479-3490.; Buasri, A., Chaiyut, N., Tapang, K., Jaroensin, S. & Panphrom, S. (2012). Equilibrium and Kinetic Studies of Biosorption of Zn(II) Ions from Wastewater Using Modified Corn Cob, APCBEE Procedia, 360-64.; Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: a review. Bioresource Technology, 97 (9), 10611-085.; El-Fadel, M., Findikakis, A. & Leckie, J. (1997). Environmental Impacts of Solid Waste Landfilling. Journal of Environmental Management, 90, 1-25.; Gupta, V.K., Mittal, A., Krishnan, L. & Mittal, J. (2005). Adsorption treatment and recovery of the hazardous dye, Brilliant Blue FCF, over bottom ash and de-oiled soya. Journal of Colloid and Interface Science, 293, 16-26.; Gupta, V. K. & Suhas. (2009). Application of low-cost adsorbents for dye removal a review. Journal of Environmental Management, 90 (8), 2313-2342.; Han, R., Ding, D., Xu, Y., Zou W., Wang, Y., Li, Y. & Zou, L. (2008). Use of risk husk for the adsorption of congo red from aqueous solution in column mode. Bioresource Technology, 99, 2938-2946.; Han, R., Wang, Y., Yu, W., Zou, W., Shi, J. & Liu, H. (2007). Biosorption of methylene blue from aqueous solution by rice husk in a fixed-bed column. Journal of Hazardous Materials, 141, 713-718.; Han, R., Wang, Y., Zhao, X., Wang, Y., Xie, F., Cheng, J. & Tang, M. (2009). Adsorption of methylene blue by phoenix tree leaf powder in a fixed-bed column: experiments and prediction of breakthrough curves. Desalination, 245, 284-297.; Hormaza, A., Figueroa, D. & Moreno, A. (2012). Evaluación de la remoción de un colorante azo sobre tuza de maíz mediante diseño estadístico. Revista de la Facultad de Ciencias Universidad Nacional de Colombia, 1 (1), 61-71.; Khataee, A. & Khataee, H. (2008). Photooxidative removal of the herbicide Acid Blue 9 in the presence of hydrogen peroxide: modeling of the reaction for evaluation of electrical energy per order (EEO). Journal of environmental Science and Health part B, 43, 562-568.; Moreno, A., Hormaza, A. & Figueroa, D. (2012). Diseño estadístico para la remoción eficiente del colorante rojo 40 sobre tuza de maíz. Producción + Limpia, 7 (2), 9-19.; Jaramillo, A., Echavarría A. & Hormaza, A. (2013). Diseño Box-Behnken para la optimización de la adsorción del colorante azul ácido sobre residuos de flores. Revista Ingeniería y Ciencia, 9 (18), 75-91.; Ketelsen, H. & Meyer-Windel S, (1999). Adsorption of brilliant blue FCF by soils. Geoderma, 90, 131-145.; Mittal, A. (2005). Use of hen feathers as potential adsorbent for the removal of a hazardous dye, Brilliant Blue FCF, from wastewater. Journal of Hazardous Materials, B128, 233-239.; Namasivayam, C., Prabha, D. & Kumutha, M. (1998). Removal of direct red and acid brilliant blue by adsorption on to banana pith. Bioresource Technology, 64, 77-79.; Özcan, A. S., Erdem, B. & Özcan, A. (2004). Adsorption of Acid Blue 193 from aqueous solutions onto Na– bentonite and DTMA–bentonite. Journal of Colloid and Interface Science, 280, 44-54.; Pardo, C. (2012). Selección de Tecnologías Limpias. Recuperado de http://datateca.unad.edu.co/contenidos/358029/ContenidoLinea/ficha_tcnica.htm; Piccin, J. S., Vieira, M. L. G., Dotto, G. L. & Pinto, L. A. (2009). Adsorption of FD&C Red No. 40 by chitosan: Isotherms analysis. Journal Food Engineering, 95, 16-20.; Rafatullah, M. (2010). Adsorption of methylene blue on low-cost adsorbents: a review. Journal of Hazard Materials, 177 (1), 70-80.; Song, J., Zou, W., Bian Y., Su, F. & Han, R. (2011). Adsorption characteristics of methylene blue by peanut husk in batch and column modes. Desalination, 265, 119-125.; Wang, S., Zhu, Z.H., Commes, A., Haghseresht, F. & Lu, G. Q. (2005). The physical and surface chemical characteristics of activated carbons and the adsorption of methylene blue from wastewater. Journal of Colloid and Interface Science, 284, 440-446.; http://hemeroteca.unad.edu.co/index.php/riaa/article/view/911; https://repository.unad.edu.co/handle/10596/29342
No Comments.