نبذة مختصرة : Staphylococcus aureus is a commensal that colonizes the skin and mucosa of 20-30% of the human population without leading to symptoms of diseases. However, it is also the most important cause of nosocomial infections. Those range from minor skin infections to life-threatening diseases such as pneumonia, endocarditis or septicaemia. Development of strains with resistance against many antibiotics complicates the situation further. The variety of strains with their various properties is one reason why no successful vaccine has been introduced to the market, yet. Therefore, efficient strategies for prevention and therapy of these dangerous infections are urgently needed. To accomplish these goals, the understanding of molecular interactions between host and pathogen is indispensable. Within this dissertation, several internalization experiments were performed aiming to investigate the interaction of S. aureus HG001 and human cell lines upon infection on the protein level. In order to obtain sufficient amounts of proteins for comprehensive physiological interpretations, it is necessary to enrich bacteria, secreted bacterial proteins or infected host cells upon internalization. In the framework of this thesis, bacteria which continuously produce green fluorescent protein (GFP) were employed. With that it was possible to sort bacteria from lysed host cells by flow cytometry or to separate host cells carrying bacteria after contact from those which did not. Subsequently, the proteins were proteolytically digested and peptides were analyzed by mass spectrometry in a gel-free proteomics approach. To allow such analyses also for staphylococci which do not produce GFP, such as clinical isolates, an additional protocol was developed. Prior to the infection, bacteria were labeled with fluorescent or para-magnetic nanoparticles. Afterwards bacteria could be separated from host cell debris by fluorescence-based cell sorting or with the help of a strong magnet. In order to cover also important secreted virulence factors of S. ...
No Comments.