Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Construction of TiO2@Cu2O-CuS heterostructures integrating RGO for enhanced full-spectrum photocatalytic degradation of organic pollutants

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Universidad de Alicante. Departamento de Química Inorgánica; Universidad de Alicante. Instituto Universitario de Materiales; Materiales Avanzados
    • بيانات النشر:
      Elsevier
    • الموضوع:
      2024
    • Collection:
      RUA - Repositorio Institucional de la Universidad de Alicante
    • نبذة مختصرة :
      This study presents the development and optimization of TiO2@Cu2O-CuS heterostructures, enhanced with reduced graphene oxide (RGO), for efficient photocatalytic degradation of organic pollutants, focusing on imidacloprid. Two configurations, TiO2/RGO/Cu2O-CuS and Cu2O-CuS/RGO/TiO2, are explored to highlight the impact of material layering on photocatalytic efficiency. The strategic integration of RGO optimizes charge transfer, crucial for photocatalysis. Comprehensive characterization techniques, such as X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), Raman spectroscopy, and Nitrogen adsorption-desorption isotherms, provide insights into the crystalline structure, morphology, surface chemistry, and textural properties of the heterostructures. The TiO2/RGO/Cu2O-CuS configuration significantly outperforms its counterpart in photocatalytic activity under full-spectrum (UV–VIS–IR) illumination, due to improved charge carrier dynamics and synergistic interactions between the composite materials. Remarkably, the TiO2/RGO/Cu2O-CuS assembly achieved over 95 % degradation of imidacloprid under simulated solar irradiation, marking a breakthrough in solar spectrum utilization for photocatalysis and exhibits promising recyclability, maintaining its high photocatalytic efficiency even after multiple degradation cycles, highlighting its potential for sustainable pollutant removal applications. Additionally, this configuration demonstrates a twofold increase in degradation efficiency compared to separate UV and VIS irradiations, emphasizing its rapid pollutant removal capability. This research underscores the critical role of material layer sequencing in developing high-efficiency photocatalytic systems and marks a significant advancement in environmental remediation technologies that harness renewable energy sources. ; This work was supported by a grant from the Romanian National Authority for Scientific Research and Innovation, CCCDI-UEFISCDI, Project number 169/2020 ...
    • Relation:
      https://doi.org/10.1016/j.jallcom.2024.174682; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PCI2020-111968; Journal of Alloys and Compounds. 2024, 994: 174682. https://doi.org/10.1016/j.jallcom.2024.174682; 0925-8388 (Print); 1873-4669 (Online); http://hdl.handle.net/10045/142642
    • الرقم المعرف:
      10.1016/j.jallcom.2024.174682
    • الدخول الالكتروني :
      https://doi.org/10.1016/j.jallcom.2024.174682
      http://hdl.handle.net/10045/142642
    • Rights:
      © 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/). ; info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.5AF47836