Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Relation between the microstructure and technological properties of porcelain stoneware. A review ; Relación entre la microestructura y las propiedades tecnológicas en gres porcelánico. Revisión bibliográfica

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Consejo Superior de Investigaciones Científicas
    • الموضوع:
      2015
    • Collection:
      Materiales de Construcción (E-Journal)
    • نبذة مختصرة :
      Porcelain stoneware is a strongly sintered ceramic material fabricated from ball clays-quartz-feldspar mixtures. Porcelain stoneware is characterized by its excellent technical and functional properties (low water absorption, high mechanical properties, resistant to chemical substances and cleaning agents, aesthetic possibilities …). These characteristic and technical features make that among the different types of ceramic tile, porcelain stoneware is the ceramic product that in the last years has best withstood the economic crisis in the construction sector. These properties are related to the microstructure of porcelain stoneware, which is a grain and bond type with large particles of filler (quartz), mullite crystals, a silica-rich amorphous phase and porosity. The understanding of the relationship between the microstructure and the properties of porcelain stoneware is hardly important for the development and design of these materials whose tendency is the manufacture of thinner tiles with higher dimensions but must continue to comply the specific technical requirements. ; El gres porcelánico es un material sinterizado fabricado a partir de una mezcla de arcillas, cuarzo y feldespato. Tecnológicamente, el gres porcelánico se caracteriza por sus excelentes características técnicas y funcionales (baja absorción de agua, buenas propiedades mecánicas, resistente a substancias químicas, posibilidades estéticas…). Estas cualidades han propiciado que, entre los diferentes tipos de baldosa cerámica, es el gres porcelánico el producto que mejor ha resistido la crisis económica sufrida por el Sector de la Construcción. Las propiedades tecnológicas están relacionadas con su microestructura, compuesta de partículas de cuarzo, cristales de mullita, fase amorfa y porosidad. El conocimiento de la relación entre la microestructura y las propiedades tecnológicas del gres porcelánico es de gran importancia para avanzar en el diseño y desarrollo de estos materiales, cuya tendencia es la fabricación de piezas de mayor formato y ...
    • File Description:
      text/html; application/pdf; text/xml
    • Relation:
      https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/1944/2365; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/1944/2366; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/1944/2367; Barbieri, L.; Bonfatti, L.; Ferrari, A.M; Leonelli, C.; Manfredini, T.; Settembre Blundo, D. (1995) Relationship between microstructure and mechanical properties in fully vitrified stoneware. In: Ceramics: Charting the Future, Techna. Srl., Modena, 99–105.; Sánchez, E. (2002) Technical considerations on porcelain tile products and their manufacturing process. In: VII World Congress on Ceramic Tile Quality, vol. I, Cámara Oficial de Comercio, Industria y Navegación, Castellón, 57–84.; Sánchez, E.; García-Ten, J.; Sanz, V.; Moreno, A. (2010) Porcelain tile: Almost 30 years of steady scientific-technological evolution. Ceram. Int. 36 [3], 831–845. http://dx.doi.org/10.1016/j.ceramint.2009.11.016; Manfredini, T.; Pellacani, G.C.; Romagnoli, M.; Pennisi, L. (1995) Porcelainized stoneware tiles. Am. Ceram. Soc. Bull. 74 [5], 76–79.; ISO 13006:2012. Ceramic tiles: Definitions, classification, characteristics and marking.; Dondi, M.; Ercolani, G.; Melandri, C.; Mingazzini, C.; Marsigli, M. (1995) The chemical composition of porcelain stoneware tiles and its influence on microstructural and mechanical properties. Interceram 48, 75–83.; Barba, A.; Beltrán, V.; Feliu, C.; García, J.; Gines, F.; Sánchez, E.; Sanz, V. (2002) Materias primas para la fabricación de soportes de baldosas cerámicas, 2 ed., Instituto de Tecnología Cerámica, Castellón.; Sánchez, E.; Orts, M.J.; Ten, J.G.; Cantavella, V. (2001) Porcelain tile composition effect on phase formation and end products. Am. Ceram. Soc. Bull. 80 [6], 43–49.; Leonelli, C.; Bondioli, F.; Veronesi, P.; Romagnoli, M.; Manfredini, M.; Pellacani, G.C.; Cannillo, V. (2001) Enhancing the mechanical properties of porcelain stoneware tiles: a microstructural approach. J. Eur. Ceram. Soc. 21 [6], 785–793. http://dx.doi.org/10.1016/S0955-2219(00)00266-1; Biffi, G. (1997) Il gres porcellanato: Manuale di fabricacione e tecniche di impego, Faenza editrice, Faenza.; Llorens, F.G. (2000) Materias primas para la fabricación de gres porcelánico. Ceram. Inf. 286, 908–913.; Llorens, F.G. (1999) Materias primas fundentes para la fabricación de gres porcelánico. Ceram. Inf. 254, 21–26.; Galán-Arboledas, R.J.; Merino, A.; Bueno S. (2013) Use of new raw materials and industrial wastes to improve the possibilities of using ceramic materials from Bailén (Jaén, southern Spain). Mater. Construcc. 63 [312], 553–568.; Xavier, G.C.; Savoya, F.; Maja, P.C.; Alexandre, J. (2012) Durability of fired clay bricks containing granite power. Mater. Construcc. 62 [306], 213–229. http://dx.doi.org/10.3989/mc.2012.60710; Martinez, M.L.; Eliche, D; Cruz, N.; Corpas, F.A. (2012) Utilization of bagasse from the beer industry in clay brick production for building. Mater. Construcc. 62 [306], 199–212.; Dondi, M.; Fabbri, B.; Manfredini, T.; Pellacani, G.C. (1995) Microstructure and mechanical properties of porcelainized stoneware tiles. In: Proceedings of the 4th ECerS, Fanenza Editrice, Faenza, 319–326.; Tenorio Cavalcante, P.M.; Dondi, M.; Ercolani, G.; Guarini, G.; Melandri, M.; Raimondo, M.; Rocha e Almendra, E. (2004) The influence of microstructure on the performance of white porcelain stoneware. Ceram. Int. 30 [6], 953–963. http://dx.doi.org/10.1016/j.ceramint.2003.11.002; Sánchez, E.; Ibáñez, M.J.; García-Ten, J.; Quereda, M.F.; Hutchings, I.M.; Xu, Y.M. (2006) Porcelain tile microstructure: implications for polished tile properties. J. Eur. Ceram. Soc. 26 [13], 2533–2540. http://dx.doi.org/10.1016/j.jeurceramsoc.2005.06.002; Brusa. A. (1987) Características, prestaciones y tecnología de producción de pavimento gresificado, no esmaltado, con efecto granito (gres porcelánico). Tec. Ceram. 159, 562–57.; Brusa, A.; Contoli L.; Dardi, M. (1994) Gres porcelánico fino. Ceram. Inf. 204, 17–26.; Manfredini, T.; Romagnoli, M.; Rincón, J. Ma. (1996) Porcelanized stoneware:architectural, processing and physico-mechanical properties. Mater. Construcc. 46 [242–243], 107–118. http://dx.doi.org/10.3989/mc.1996.v46.i242-243.533; Mucci, L. (1990) Topicality and prospects of increasing the aesthetic value of porcelain stoneware. Ceramurgia 20 [1], 20–23.; Martín-Márquez, J.; Rincón, J. Ma.; Romero, M. (2008) Effect of firing temperature on sintering of porcelain stoneware tiles. Ceram. Int. 34 [8], 1867–1873. http://dx.doi.org/10.1016/j.ceramint.2007.06.006; Martín-Márquez, J.; De la Torre, A.G.; Aranda, M.A.G.; Rincón, J. Ma.; Romero, M. (2009) Evolution with Temperature of Crystalline and Amorphous Phases in Porcelain Stoneware. J. Am. Ceram. Soc. 92 [1], 229–234. http://dx.doi.org/10.1111/j.1551-2916.2008.02862.x; Iqbal, Y.; Lee, E.J. (2000) Microstructural evolution in triaxial porcelain. J. Am. Ceram. Soc. 83 [12], 3121–27. http://dx.doi.org/10.1111/j.1151-2916.2000.tb01692.x; Chakravorty, A.K.; Ghosh, D.K. (1991) Kaolinite mullite reaction-series-the development, significance of a binary aluminosilicate phase. J. Am. Ceram. Soc. 74 [6], 1401–1406. http://dx.doi.org/10.1111/j.1151-2916.1991.tb04119.x; Brindley, G.W.; Nakahira, M. (1957) Kinetics of dehydroxylation of kaolinite and halloysite. J. Am. Ceram. Soc. 40 [10], 346–350. http://dx.doi.org/10.1111/j.1151-2916.1957.tb12549.x; Johnson, H.B.; Kessler, F. (1969) Kaolinite dehydroxilation kinetics. J. Am. Ceram. Soc. 52 [4], 199–204. http://dx.doi.org/10.1111/j.1151-2916.1969.tb13365.x; Brindley, G.W.; Nakahira, M. (1959) The kaolinite-mullite reaction series: I, a survey of outstanding problems. J. Am. Ceram. Soc. 42 [7], 311–314. http://dx.doi.org/10.1111/j.1151-2916.1959.tb14314.x; Brindley, G.W.; Nakahira, M. (1959). The kaolinite-mullite reaction series: II, metacaolín. J. Am. Ceram. Soc. 42 [7], 314–318. http://dx.doi.org/10.1111/j.1151-2916.1959.tb14315.x; Schneider, H.; Okada, K.; Pask, J. (1994) Mullite and mullite ceramics, Wiley, New York.; Bowen, N.L.; Greig, J.W. (1924) The system: Al2O3-SiO2. J. Am. Ceram. Soc. 7 [4], 238–254. http://dx.doi.org/10.1111/j.1151-2916.1924.tb18190.x; Brindley, G.W.; Nakahira, M. (1959) The kaolinite-mullite reaction series: III, the high-temperature phases. J. Am. Ceram. Soc. 42 [7], 319–323. http://dx.doi.org/10.1111/j.1151-2916.1959.tb14316.x; Okada, K.; Otsuka, N.; Osaka, J. (1986) Characterization of spinel phase formed in the kaolin-mullite termal sequence. J. Am. Ceram. Soc. 69 [10], c251-c253.; Sonuparlak, B.; Sarikaya, M.; Aksay I.A. (1987) Spinel phase formation during 980 °C exothermic reaction in the kaolinite-to-mullite reaction series. J. Am. Ceram. Soc. 70 [11], 837–842. http://dx.doi.org/10.1111/j.1151-2916.1987.tb05637.x; Gislimberti, A.; Maschio, R.D.; Campolo, M.P.; Primio, S. (1998) Porcelain Stoneware. Correlation between Chemical–Physical Properties of the Raw Materials and Technological Characteristics of the Final Product: Durability and Mechanical Strength. Ceram. Acta, 9, 46–47.; Sánchez, E.; García, J.; Barba, A.; Feliú C. (1998) Effect of Porcelain Tile Raw Materials Composition on Pressing Behaviour of the Resulting Spray Dried Powder. Ceram. Acta 9, 44–45.; Sánchez, E.; Orts, M.J.; García, J.; de Lamus, R. (1998) Effect of Porcelain Tile Raw Materials Compositions on the Arising Phases in Firing. Ceram. Acta 9, 205–7.; Martín-Márquez, J.; Rincón, J. Ma.; Romero, M. (2010) Mullite development on firing in porcelain stoneware bodies. J. Eur. Ceram. Soc. 30 [7], 1599–1607. http://dx.doi.org/10.1016/j.jeurceramsoc.2010.01.002; Lee, W.E.; Rainforth, W.M. (1994) Ceramic Microstructures. Chapman and Hall, London, U.K.; Norton, C.L. (1931) The Influence of Time on Maturing Temperature of Whiteware Bodies II. J. Am. Ceram. Soc. 14 [3], 192–206. http://dx.doi.org/10.1111/j.1151-2916.1931.tb16931.x; McConville, C.J.; Lee, E.W.; Sharp, J.H. (1998) Microstructural evolution in fired kaolinite. Br. Ceram. Trans. 97 [4], 162–168.; Chen, C.Y.; Lan, G.S.; Tuan, W.H. (2000) Microstructural evolution of mullite during the sintering of kaolin powder compacts. Ceram. Int. 26 [7], 715–720. http://dx.doi.org/10.1016/S0272-8842(00)00009-2; Iqbal, Y.; Lee, E.W. (1999) Fired Porcelain Microstructures Revisited. J. Am. Ceram. Soc. 82 [12], 3584–90. http://dx.doi.org/10.1111/j.1151-2916.1999.tb02282.x; Lee, W.E.; Iqbal, Y. (2001) Influence of mixing on mullite formation in porcelain. J. Eur. Ceram. Soc. 21 [14], 2583–2586. http://dx.doi.org/10.1016/S0955-2219(01)00274-6; Gil, C.; Peiró, M.C.; Gómez, J.J.; Chiva, L.; Cerisuelo, E.; Carda, J.B. (2006) Estudio de la porosidad en soportes del gres porcelánico. Ceram. Inf. 336, 53–56.; Beltrán, V.; Ferrer, C.; Bagán, V.; Sánchez, E.; Garcia, J.; Mestre, S. (1996) Influence of pressing powder characteristics and sintering temperature on the porous microstructure and stain resistance of porcelain tile. In: IV World Congress on Ceramic Tile Quality, Cámara Oficial de Comercio, Industria y Navegación, Castellón, 133–48.; Amorós, J.L.; Cantavella, V.; Jarque, J.C.; Felíu, C. (2008) Fracture properties of spray-dried powder compacts: effect of granule size. J. Eur. Ceram. Soc. 28 [15], 2823–34. http://dx.doi.org/10.1016/j.jeurceramsoc.2008.05.004; Amoros, J.L.; Orts, M.J.; Garcia-Ten, J.; Gozalbo, A.; Sánchez, E. (2007) Effect of the green porous texture on porcelain tile properties. J. Eur. Ceram. Soc. 27 [5], 2295–2301. http://dx.doi.org/10.1016/j.jeurceramsoc.2006.07.005; Alves, H.J.; Melchiades, F.G.; Boschi, A.O. (2010) Effect of spray-dried powder granulometry on the porous microstructure of polished porcelain tile. J. Eur. Ceram. Soc. 30 [6], 1259–1265. http://dx.doi.org/10.1016/j.jeurceramsoc.2009.11.018; Alves, H.J.; Melchiades, F.G.; Boschi, A.O. (2010) Spray-dried powder granulometry: Influence on the porous microstructure of polished porcelain tile. Bol. Soc. Esp. Ceram. V. 49 [4], 239–246.; Alves, H.J.; Minussi, F.B.; Melchiades, F.G.; Boschi, A.O. (2011) Characteristics of pores responsible for staining of polished porcelain tile. Ind. Ceram. 31 [1], 21–26.; Gualtieri, M.L.; Romagnoli, M.; Gualtieri, A.F. (2011) Influence of body composition on the technological properties and mineralogy of stoneware: A DOE and mineralogical– microstructural study. J. Eur. Ceram. Soc. 31 [5], 673–685. http://dx.doi.org/10.1016/j.jeurceramsoc.2010.12.002; Alves, H.J.; Melchiades, F.G.; Boschi, A.O. (2012) Effect of feldspar particle size on the porous microstructure and stain resistance of polished porcelain tiles. J. Eur. Ceram. Soc. 32 [10], 2095–2102. http://dx.doi.org/10.1016/j.jeurceramsoc.2012.03.019; Hutchings, I.M.; Xu, Y.; Sánchez, E.; Ibáñez, M.J.; Quereda, M.F. (2006) Porcelain tile microstructure: implications for polishability. J. Eur. Ceram. Soc. 26 [6], 1035–1042. http://dx.doi.org/10.1016/j.jeurceramsoc.2004.12.019; Jazayeri, S.H.; Salem, A.; Timellini, G.; Rastelli, E. (2007) A kinetic study on the development of porosity in porcelain stoneware tile sintering. Bol. Soc. Esp. Ceram. V. 46 [1], 1–6. http://dx.doi.org/10.3989/cyv.2007.v46.i1.257; Tucci, A.; Esposito, L.; Malmusi, L.; Piccinini, A. (2002) Wear resistance and stain resistance of porcelain stoneware tiles. Key Eng. Mater. 206, 1759–1762.; Esposito, L.; Tucci, A.; Rastelli, E.; Palmonari, C.; Selli, S. (2002) Stain resistance of porcelain stoneware tile. Am. Ceram. Soc. Bul. 81 [10], 38–42.; Dondi, M.; Guarini, G.; Raimondo, M.; Almendra, E.R.; Cavalcante, P.M.T. (2004) Stain resistance of porcelain stoneware tiles: The influence of microstructure. Key Eng. Mater. 264–268, 1511–1514. http://dx.doi.org/10.4028/www.scientific.net/KEM.264-268.1511; Dondi, M.; Ercolani, G.; Guarini, G.; Melandri, C.; Raimondo, M.; Almendra, E.R.E.; Cavalcante, P.M.T. (2005) The role of surface microstructure on the resistance to stains of porcelain stoneware tiles. J. Eur. Ceram. Soc. 25 [4], 357–365. http://dx.doi.org/10.1016/j.jeurceramsoc.2004.01.017; Cannillo, V.; Esposito, L.; Rambaldi, E.; Sola, A.; Tucci, A. (2009) Effect of porosity on the elastic properties of porcelainized stoneware tiles by a multi-layered model. Ceram. Int. 35 [1], 205–211. http://dx.doi.org/10.1016/j.ceramint.2007.10.015; Alves, H.J.; Minussi, F.B.; Melchiades, F.G.; Boschi, A.O. (2009) Porosidade susceptível ao manchamento em porcelanato polido. Ceram. Ind. 14 [1], 21–6.; Rastelli, E.; Tucci, A.; Esposito, L.; Selli, S. (2002) Stain resistance of porcelain stoneware tile: mechanisms of penetration of staining agents and quantitative evaluation. Ceram. Acta 14 [1], 30–7.; Dondi, M.; Raimondo, M.; Zanelli, C. (2008) Stain resistance of ceramic tiles. Ceram. World Rev. 77, 82–9.; Alves, H.J.; Freitas, M.R.; Melchiades, F.G.; Boschi, A.O. (2011) Dependence of surface porosity on the polishing depth of porcelain stoneware tiles. J. Eur. Ceram. Soc. 31 [5], 665–671. http://dx.doi.org/10.1016/j.jeurceramsoc.2010.11.028; Pérez, J.M.; Rincón, J. Ma.; Romero, M. (2012) Effect of moulding pressure on microstructure and technological properties of porcelain stoneware. Ceram. Int. 38 [1], 317–325. http://dx.doi.org/10.1016/j.ceramint.2011.07.009; Pérez, J.M.; Romero, M. (2014) Microstructure and technological properties of porcelain stoneware tiles moulded at different pressures and thicknesses. Ceram. Int. 40 [1], 1365–1377. http://dx.doi.org/10.1016/j.ceramint.2013.07.018; Aduda, B.O.; Nyongesa, F.W. (2000) Role of aspect ratio in elastic modulus–porosity relationship of triaxial porcelain. Br. Ceram. Trans. 99 [5], 206–211. http://dx.doi.org/10.1179/096797800680956; Kobayashi, Y.; Ohira, O.; Kato, E. (1992) Effect of firing temperature on bending strength of porcelains for tableware. J. Am. Ceram. Soc. 75 [7], 1801–1806. http://dx.doi.org/10.1111/j.1151-2916.1992.tb07200.x; Hamano, K.; Hirayama, M. (1994) Effect of quartz addition on mechanical strength of porcelain bodies prepared from pottery stone. J. Ceram. Soc. Jap. Int. Ed. 102 [7], 664–668. http://dx.doi.org/10.2109/jcersj.102.665; Dinsdale, A. and Wilkinson, W.T. (1966) Strength of Whiteware bodies. Proc. Br. Ceram. Trans. 6, 119–136.; Ece, O.I.; Nakagawa, Z. (2002) Bending strength of porcelains. Ceram. Int. 28 [2], 131–140. http://dx.doi.org/10.1016/S0272-8842(01)00068-2; Stathis, G.; Ekonomakou, A.; Stournaras, C.J.; Ftikos, C. (2004) Effect of firing conditions, filler grain size and quartz content on bending strength and physical properties of sanitaryware porcelain. J. Eur. Ceram. Soc. 24 [8], 2357–2366. http://dx.doi.org/10.1016/j.jeurceramsoc.2003.07.003; Esposito, L.; Salem, A.; Tucci, A.; Gualtieri, A.; Jazayeri, S.H. (2005) The use of nepheline-syenite in a body mix for porcelain stoneware tiles. Ceram. Int. 31 [2], 233–40. http://dx.doi.org/10.1016/j.ceramint.2004.05.006; Zanelli, C.; Raimondo, M.; Guarini, G.; Dondi, M. (2011) The vitreous phase of porcelain stoneware: Composition and evolution during sintering and physical properties J. Non-Cryst. Solids 357 [16–17], 3251–3260. http://dx.doi.org/10.1016/j.jnoncrysol.2011.05.020; Survaci, E.; Tamsu, N. (2010) The role of viscosity on microstructure development and stain resistance in porcelain stoneware tiles. J. Eur. Ceram. Soc. 30 [15], 3071–3077. http://dx.doi.org/10.1016/j.jeurceramsoc.2010.06.010; Rahaman, M.N. (2003) Ceramic processing and sintering. 2nd Edition, Marcel-Dekker Inc., New York.; Bernardin, A.M.; Souza de Medeiros, D.; Riella, H.G. (2006) Pyroplasticity in porcelain tiles. Mat Sci Eng A-Struct 427 [1–2], 316–319. http://dx.doi.org/10.1016/j.msea.2006.04.073; Aydin, T.; Kara, A. (2014) Effect of spodumene addition on pyroplastic deformation of porcelain stoneware. J. Ceram. Process. Res. 15 [6], 486–491.; Correia, S.L.; Oliveira, A.P.N.; Hotza, D.; Segadaes, A.M. (2006) Properties of Triaxial Porcelain Bodies: Interpretation of Statistical Modeling. J. Am. Ceram. Soc. 89 [11], 3356–3365. http://dx.doi.org/10.1111/j.1551-2916.2006.01245.x; Amigó, J.M.; Clausell, J.V.; Esteve, V.; Delgado, J.M.; Reventós, M.M.; Ochando, L.E.; Debaerdemaeker, T.; Martí, F. (2004) X-ray powder diffraction phase analysis and thermomechanical properties of silica and alumina porcelains. J. Eur. Ceram. Soc. 24 [1], 75–81. http://dx.doi.org/10.1016/S0955-2219(03)00119-5; Ohya, Y.; Takahashi, Y. (1999) Acoustic emission from a porcelain body during cooling. J. Am. Ceram. Soc. 82 [2], 445–448. http://dx.doi.org/10.1111/j.1551-2916.1999.tb20083.x; Sánchez, E.; García-Ten, J.; Ibáñez, M.J.; Feliu, C.; Sánchez, J.; Portolés, J. (2004) Estudio comparativo de propiedades de piezas de gres porcelánico pulido. Ceram. Inf. 314, 56–66.; De Noni Jr., A.; Hotza, D.; Cantavella, V.; Sánchez, E. (2010) Influence of composition on mechanical behaviour of porcelain tile. Part II: Mechanical properties and microscopic residual stress. Mat Sci Eng A-Struct 527 [7–8], 1736–1743.; McMaster, R.A. (1989) Fundamentals of tempered glass. Ceram. Eng. Sci. Proc. 10, 193–206.; Navarro, J.M. (2003) El Vidrio. Constitución, Fabricación y Propiedades. 3ª edición, CSIC, Madrid.; De Noni Jr., A.; Hotza, D.; Cantavella, V.; Sanchez, E. (2008) Influence of macroscopic residual stresses on the mechanical behavior and microstructure of porcelain tile. J. Eur. Ceram. Soc. 28 [13], 2463–2469. http://dx.doi.org/10.1016/j.jeurceramsoc.2008.03.003; De Noni Jr., A.; Hotza, D.; Cantavella, V.; Sanchez, E. (2009) Effect of quartz particle size on the mechanical behaviour of porcelain tile subjected to different cooling rates. J. Eur. Ceram. Soc. 29 [6], 1039–1046. http://dx.doi.org/10.1016/j.jeurceramsoc.2008.07.052; Senapati, U.; Carty, W.M. (1998) Porcelain-raw materials, processing, phase evolution, and mechanical behavior. J. Am. Ceram. Soc. 81 [1], 3–20.; Warshaw, S.I.; Seider, R.J. (1967) Comparison of strength of triaxial porcelains containing alumina and silica. J. Am. Ceram. Soc. 50 [7], 337–342. http://dx.doi.org/10.1111/j.1151-2916.1967.tb15128.x; Zoellner, A. (1908) Some chemical and physical properties of porcelain. Sprechsall 41, 471–473.; Carbajal, L.; Rubio-Marcos, F.; Bengochea, M.A.; Fernández, J.F. (2007) Properties related phase evolution in porcelain ceramics. J. Eur. Ceram. Soc. 27 [13–15], 4065–4069. http://dx.doi.org/10.1016/j.jeurceramsoc.2007.02.096; De Noni Jr, A.; Hotza, D.; Cantavella, V.; Sánchez, E. (2011) Influence of composition on mechanical behaviour of porcelain tile. Part III: Effect of the cooling rate of the firing cycle, Mat Sci Eng A-Struct 528 [9], 3330–3336.; Martín-Márquez, J.; Rincón, J. Ma.; Romero, M. (2010) Effect of microstructure on mechanical properties of porcelain stoneware. J. Eur. Ceram. Soc. 30 [15], 3063–3069. http://dx.doi.org/10.1016/j.jeurceramsoc.2010.07.015; Dondi, M.; Guarini, G.; Melandri, C.; Raimondo, M.; Cavalante, P.M.T.; Zanelli, C. (2005) Resistance to deep abrasion of porcelain stoneware tiles: Key factors. Ind. Ceram. 25 [2], 71–78.; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/1944
    • الرقم المعرف:
      10.3989/mc.2015.05915
    • الدخول الالكتروني :
      https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/1944
      https://doi.org/10.3989/mc.2015.05915
    • Rights:
      Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC) ; https://creativecommons.org/licenses/by/4.0
    • الرقم المعرف:
      edsbas.59A280DF