Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

An adaptive robust regression method: Application to galaxy spectrum baseline estimation

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      GIPSA - Communication Information and Complex Systems (GIPSA-CICS); Département Images et Signal (GIPSA-DIS); Grenoble Images Parole Signal Automatique (GIPSA-lab); Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Grenoble Images Parole Signal Automatique (GIPSA-lab); Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ); Centre de Recherche Astrophysique de Lyon (CRAL); École normale supérieure de Lyon (ENS de Lyon); Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS); GIPSA - Signal et Automatique pour la surveillance, le diagnostic et la biomécanique (GIPSA-SAIGA); Département Automatique (GIPSA-DA); Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Département Images et Signal (GIPSA-DIS); ERC-MUSICOS; European Project: 339659,EC:FP7:ERC,ERC-2013-ADG,MUSICOS(2014)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2016
    • Collection:
      HAL Lyon 1 (University Claude Bernard Lyon 1)
    • الموضوع:
    • نبذة مختصرة :
      International audience ; In this paper, a new robust regression method based on the Least Trimmed Squares (LTS) is proposed. The novelty of this approach consists in a simple adaptive estimation of the number of outliers. This method can be applied to baseline estimation, for example to improve the detection of gas spectral signature in astronomical hy-perspectral data such as those produced by the new Multi Unit Spec-troscopic Explorer (MUSE) instrument. To do so a method following the general idea of the LOWESS algorithm, a classical robust smoothing method, is developed. It consists in a windowed local linear regression, the local regression being done here by the new adap-tive LTS approach. The developed method is compared with state-of-the art baseline estimated algorithms on simulated data closed to the real data produced by the MUSE instrument.
    • Relation:
      info:eu-repo/grantAgreement/EC/FP7/339659/EU/MUSE Imaging of the Cosmic Web – Ultra-Deep Observations of Intergalactic and Circumgalactic Gas/MUSICOS
    • الرقم المعرف:
      10.1109/ICASSP.2016.7472513
    • الدخول الالكتروني :
      https://hal.science/hal-01462974
      https://hal.science/hal-01462974v1/document
      https://hal.science/hal-01462974v1/file/ArticleICASSP.pdf
      https://doi.org/10.1109/ICASSP.2016.7472513
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.592DE403