Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Empirical Mathematical Model of Microprocessor Sensitivity and Early Prediction to Proton and Neutron Radiation-Induced Soft Errors

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Universidad de Alicante. Departamento de Tecnología Informática y Computación; UniCAD: Grupo de investigación en CAD/CAM/CAE de la Universidad de Alicante
    • بيانات النشر:
      IEEE
    • الموضوع:
      2020
    • Collection:
      RUA - Repositorio Institucional de la Universidad de Alicante
    • نبذة مختصرة :
      A mathematical model is described to predict microprocessor fault tolerance under radiation. The model is empirically trained by combining data from simulated fault-injection campaigns and radiation experiments, both with protons (at the National Center of Accelerators (CNA) facilities, Seville, Spain) and neutrons [at the Los Alamos Neutron Science Center (LANSCE) Weapons Neutron Research Facility at Los Alamos, USA]. The sensitivity to soft errors of different blocks of commercial processors is identified to estimate the reliability of a set of programs that had previously been optimized, hardened, or both. The results showed a standard error under 0.1, in the case of the Advanced RISC Machines (ARM) processor, and 0.12, in the case of the MSP430 microcontroller. ; This work was supported in part by Spanish MINECO under Project ESP-2015-68245-C4-3-P and Project ESP-2015-68245-C4-4-P.
    • Relation:
      https://doi.org/10.1109/TNS.2020.2993637; info:eu-repo/grantAgreement/MINECO//ESP-2015-68245-C4-3-P; info:eu-repo/grantAgreement/MINECO//ESP-2015-68245-C4-4-P; IEEE Transactions on Nuclear Science. 2020, 67(7): 1511-1520. doi:10.1109/TNS.2020.2993637; 0018-9499 (Print); 1558-1578 (Online); http://hdl.handle.net/10045/108118; A10259098
    • الرقم المعرف:
      10.1109/TNS.2020.2993637
    • الدخول الالكتروني :
      http://hdl.handle.net/10045/108118
      https://doi.org/10.1109/TNS.2020.2993637
    • Rights:
      © 2020 IEEE ; info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.5824354C