Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A subpolynomial-time algorithm for the free energy of one-dimensional quantum systems in the thermodynamic limit

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Department of Applied Mathematics and Theoretical Physics (DAMTP); University of Cambridge UK (CAM); Traitement optimal de l'information avec des dispositifs quantiques (QINFO); Inria Grenoble - Rhône-Alpes; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Université de Lyon-Université Grenoble Alpes (UGA)-Inria Lyon; Institut National de Recherche en Informatique et en Automatique (Inria); Laboratoire de l'Informatique du Parallélisme (LIP); École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)
    • بيانات النشر:
      HAL CCSD
      Verein
    • الموضوع:
      2023
    • Collection:
      Université de Lyon: HAL
    • نبذة مختصرة :
      Included additional references, minor corrections in Lemma 4.1 ; International audience ; We introduce a classical algorithm to approximate the free energy of local, translation-invariant, one-dimensional quantum systems in the thermodynamic limit of infinite chain size. While the ground state problem (i.e., the free energy at temperature T = 0 ) for these systems is expected to be computationally hard even for quantum computers, our algorithm runs for any fixed temperature T > 0 in subpolynomial time, i.e., in time O ( ( 1 ε ) c ) for any constant c > 0 where ε is the additive approximation error. Previously, the best known algorithm had a runtime that is polynomial in 1 ε . Our algorithm is also particularly simple as it reduces to the computation of the spectral radius of a linear map. This linear map has an interpretation as a noncommutative transfer matrix and has been studied previously to prove results on the analyticity of the free energy and the decay of correlations. We also show that the corresponding eigenvector of this map gives an approximation of the marginal of the Gibbs state and thereby allows for the computation of various thermodynamic properties of the quantum system.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2209.14989; ARXIV: 2209.14989
    • الرقم المعرف:
      10.22331/q-2023-05-22-1011
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.57E96316