Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

[NiFe]-hydrogenases are constitutively expressed in an enriched Methanobacterium sp. population during electromethanogenesis

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Ministerio de Economía y Competitividad (Espanya)
    • بيانات النشر:
      Public Library of Science (PLoS)
    • الموضوع:
      2019
    • Collection:
      Universitat de Girona: DUGiDocs (UdG Digital Repository)
    • نبذة مختصرة :
      Electromethanogenesis is the bioreduction of carbon dioxide (CO2) to methane (CH4) utilizing an electrode as electron donor. Some studies have reported the active participation of Methanobacterium sp. in electron capturing, although no conclusive results are available. In this study, we aimed at determining short-time changes in the expression levels of [NiFe]-hydrogenases (Eha, Ehb and Mvh), heterodisulfide reductase (Hdr), coenzyme F420-reducing [NiFe]-hydrogenase (Frh), and hydrogenase maturation protein (HypD), according to the electron flow in independently connected carbon cloth cathodes poised at– 800 mV vs. standard hydrogen electrode (SHE). Amplicon massive sequencing of cathode biofilm confirmed the presence of an enriched Methanobacterium sp. population (>70% of sequence reads), which remained in an active state (78% of cDNA reads), tagging this archaeon as the main methane producer in the system. Quantitative RT-PCR determinations of ehaB, ehbL, mvhA, hdrA, frhA, and hypD genes resulted in only slight (up to 1.5 fold) changes for four out of six genes analyzed when cells were exposed to open (disconnected) or closed (connected) electric circuit events. The presented results suggested that suspected mechanisms for electron capturing were not regulated at the transcriptional level in Methanobacterium sp. for short time exposures of the cells to connected-disconnected circuits. Additional tests are needed in order to confirm proteins that participate in electron capturing in Methanobacterium sp ; This work was funded by Spanish Government (MINECO, CTQ2014-53718-R) and the Universitat de Girona (MPCUdG2016/139 and MCPUdG2016/121). Sebastià Puig is a Serra Hunter Fellow (UdG-AG-575). Ramiro Blasco-Gómez is grateful for the Research Personnel Training (FPI) grant (BES-2015-074229). Elisabet Perona-Vico received a Research Training grant from the University of Girona (IFUdG2018/52). LEQUiA and IEA have been recognized as consolidated research groups by the Generalitat de Catalunya (2017SGR-1552, and ...
    • File Description:
      application/pdf
    • Relation:
      info:eu-repo/semantics/altIdentifier/eissn/1932-6203; info:eu-repo/grantAgreement/MINECO//CTQ2014-53718-R/ES/TECNOLOGIAS INNOVADORAS PARA LA MEJORA DE BIOGAS: DESDE LA INVESTIGACION BASICA A LA EVALUACION DE TECNOLOGIAS/; http://hdl.handle.net/10256/17207
    • الدخول الالكتروني :
      https://doi.org/10.1371/journal.pone.0215029
      http://hdl.handle.net/10256/17207
    • Rights:
      Attribution 4.0 International ; http://creativecommons.org/licenses/by/4.0/ ; info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.54D9B262