Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Learning Geometric Reasoning Networks for Robot Task and Motion Planning

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Équipe Robotique et InteractionS (LAAS-RIS); Laboratoire d'analyse et d'architecture des systèmes (LAAS); Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse); Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J); Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP); Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT); European Project: 101070596,HORIZON.2.4 - Digital, Industry and Space,euROBIN
    • بيانات النشر:
      CCSD
    • الموضوع:
      2025
    • Collection:
      Université Toulouse III - Paul Sabatier: HAL-UPS
    • الموضوع:
    • نبذة مختصرة :
      International audience ; Task and Motion Planning (TAMP) is a computationally challenging roboticsproblem due to the tight coupling of discrete symbolic planning and continuousgeometric planning of robot motions. In particular, planning manipulation tasksin complex 3D environments leads to a large number of costly geometric plannerqueries to verify the feasibility of considered actions and plan their motions. Toaddress this issue, we propose Geometric Reasoning Networks (GRN), a graphneural network (GNN)-based model for action and grasp feasibility prediction,designed to significantly reduce the dependency on the geometric planner. More-over, we introduce two key interpretability mechanisms: inverse kinematics (IK)feasibility prediction and grasp obstruction (GO) estimation. These modules notonly improve feasibility predictions accuracy, but also explain why certain actionsor grasps are infeasible, thus allowing a more efficient search for a feasible solu-tion. Through extensive experimental results, we show that our model outperformsstate-of-the-art methods, while maintaining generalizability to more complex en-vironments, diverse object shapes, multi-robot settings, and real-world robots.
    • Relation:
      info:eu-repo/grantAgreement//101070596/EU/European ROBotics and AI Network/euROBIN
    • الدخول الالكتروني :
      https://laas.hal.science/hal-04914376
      https://laas.hal.science/hal-04914376v1/document
      https://laas.hal.science/hal-04914376v1/file/ICLR%202025.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.53BE774B