نبذة مختصرة : Diesel engine cold start is an important issue for current technology at low (below 0 °C) temperatures and for future applications. The aim of this work is to develop a description of how, when and where does fuel spray ignition occur in a glow-plug assisted engine under simulated low temperature cold start conditions. In-cylinder pressure analysis is combined with high speed visualization in an optical engine. A pilot plus main injection strategy is used. Visualization results show that pilot ignition occurs in the vicinity of the glow plug, and strongly influences main combustion initiation. Main combustion starts from the pilot flame, and propagates to the rest of the combustion chamber showing a strong visible reaction zone. After end of main injection, the rapid leaning of the mixture suppresses the strong radiation, and OH radiation is observed to progress to the rest of the combustion chamber. The combustion process shows a strong scattering, which has been quantified by combustion parameters. At higher rail pressures scattering increases, which eventually inhibits combustion initiation. However, if ignition occurs at higher rail pressures, cycle performance is better. ; Authors thank the Spanish Ministry of Innovation and Science for the financial support through the project OPTICOMB (reference code: TRA2007-67961-C03-C01). Authors also thank Daniel Lerida Sanchez de las Heras for his outstanding work in the facility set-up and adaptation and for his support during the tests. ; Pastor Soriano, JV.; García Oliver, JM.; Pastor Enguídanos, JM.; Ramírez Hernández, JG. (2011). Ignition and combustion development for high speed direct injection diesel engines under low temperature cold start conditions. Fuel. 90(4):1556-1566. https://doi.org/10.1016/j.fuel.2011.01.008 ; S ; 1556 ; 1566 ; 90 ; 4
No Comments.