Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Spherulitic copper–copper oxide nanostructure-based highly sensitive nonenzymatic glucose sensor

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Dove Press
    • الموضوع:
      2015
    • Collection:
      Dove Medical Press
    • نبذة مختصرة :
      Gautam Das, Thao Quynh Ngan Tran, Hyon Hee Yoon Department of Chemical and Biological Engineering, Gachon University, Seongnam, Republic of South Korea Abstract: In this work, three different spherulitic nanostructures Cu–CuOA, Cu–CuOB, and Cu–CuOC were synthesized in water-in-oil microemulsions by varying the surfactant concentration (30 mM, 40 mM, and 50 mM, respectively). The structural and morphological characteristics of the Cu–CuO nanostructures were investigated by ultraviolet–visible (UV–vis) spectroscopy, X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy techniques. The synthesized nanostructures were deposited on multiwalled carbon nanotube (MWCNT)-modified indium tin oxide (ITO) electrodes to fabricate a nonenzymatic highly sensitive amperometric glucose sensor. The performance of the ITO/MWCNT/Cu–CuO electrodes in the glucose assay was examined by cyclic voltammetry and chronoamperometric studies. The sensitivity of the sensor varied with the spherulite type; Cu–CuOA, Cu–CuOB, and Cu–CuOC exhibited a sensitivity of 1,229, 3,012, and 3,642 µA mM-1·cm-2, respectively. Moreover, the linear range is dependent on the structure types: 0.023–0.29 mM, 0.07–0.8 mM, and 0.023–0.34 mM for Cu–CuOA, Cu–CuOB, and Cu–CuOC, respectively. An excellent response time of 3 seconds and a low detection limit of 2 µM were observed for Cu–CuOB at an applied potential of +0.34 V. In addition, this electrode was found to be resistant to interference by common interfering agents such as urea, cystamine, l-ascorbic acid, and creatinine. The high performance of the Cu–CuO spherulites with nanowire-to-nanorod outgrowths was primarily due to the high surface area and stability, and good three-dimensional structure. Furthermore, the ITO/MWCNT/Cu–CuOB electrode applied to real urine and serum sample showed satisfactory performance. Keywords: copper oxide, multiwalled carbon nanotubes, glucose sensor, cyclic voltammetry
    • File Description:
      text/html
    • Relation:
      https://www.dovepress.com/spherulitic-copperndashcopper-oxide-nanostructure-based-highly-sensiti-peer-reviewed-fulltext-article-IJN
    • Rights:
      info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.52D782E9