Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A pairwise likelihood approach for the empirical estimation of the underlyingvariograms in the plurigaussian models

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Équipe Géostatistique; Centre de Géosciences (GEOSCIENCES); Mines Paris - PSL (École nationale supérieure des mines de Paris); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Mines Paris - PSL (École nationale supérieure des mines de Paris); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL); University of Queensland, Brisbane, AustraliaGeovariances, Avon, France
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2015
    • Collection:
      MINES ParisTech: Archive ouverte / Open Archive (HAL)
    • نبذة مختصرة :
      To be submitted to Spatial Statistics. ; The plurigaussian model is particularly suited to describe categorical regionalized variables. Starting from a simple principle, the thresh-olding of one or several Gaussian random fields (GRFs) to obtain categories, the plurigaussian model is well adapted for a wide range ofsituations. By acting on the form of the thresholding rule and/or the threshold values (which can vary along space) and the variograms ofthe underlying GRFs, one can generate many spatial configurations for the categorical variables. One difficulty is to choose variogrammodel for the underlying GRFs. Indeed, these latter are hidden by the truncation and we only observe the simple and cross-variogramsof the category indicators. In this paper, we propose a semiparametric method based on the pairwise likelihood to estimate the empiricalvariogram of the GRFs. It provides an exploratory tool in order to choose a suitable model for each GRF and later to estimate its param-eters. We illustrate the efficiency of the method with a Monte-Carlo simulation study .The method presented in this paper is implemented in the R packageRGeostats.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/1510.02668; hal-01213962; https://hal.science/hal-01213962; https://hal.science/hal-01213962v2/document; https://hal.science/hal-01213962v2/file/variopgs.pdf; ARXIV: 1510.02668
    • الدخول الالكتروني :
      https://hal.science/hal-01213962
      https://hal.science/hal-01213962v2/document
      https://hal.science/hal-01213962v2/file/variopgs.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.51C67A35