Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Approximate Bayesian Computations to fit and compare insurance loss models

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Université Claude Bernard Lyon 1 (UCBL); Université de Lyon; Institut de Science Financière et d'Assurances (ISFA); Laboratoire de Sciences Actuarielles et Financières - EA2429 (LSAF); Laboratoire de Sciences Actuarielles et Financière (LSAF)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2020
    • Collection:
      Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
    • نبذة مختصرة :
      Approximate Bayesian Computation (ABC) is a statistical learning technique to calibrate and select models by comparing observed data to simulated data. This technique bypasses the use of the likelihood and requires only the ability to generate synthetic data from the models of interest. We apply ABC to fit and compare insurance loss models using aggregated data. We present along the way how to use ABC for the more common claim counts and claim sizes data. A state-of-the-art ABC implementation in Python is proposed. It uses sequential Monte Carlo to sample from the posterior distribution and the Wasserstein distance to compare the observed and synthetic data. MSC 2010 : 60G55, 60G40, 12E10.
    • Relation:
      hal-02891046; https://hal.archives-ouvertes.fr/hal-02891046; https://hal.archives-ouvertes.fr/hal-02891046/document; https://hal.archives-ouvertes.fr/hal-02891046/file/ABCFitLoMo_Goffard_Laub.pdf
    • الدخول الالكتروني :
      https://hal.archives-ouvertes.fr/hal-02891046
      https://hal.archives-ouvertes.fr/hal-02891046/document
      https://hal.archives-ouvertes.fr/hal-02891046/file/ABCFitLoMo_Goffard_Laub.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.5144D71