Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Artificial Intelligence in Predicting Microsatellite Instability and KRAS, BRAF Mutations from Whole-Slide Images in Colorectal Cancer: A Systematic Review

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Centre Hospitalier Universitaire de Rennes CHU Rennes = Rennes University Hospital Ponchaillou; Laboratoire Traitement du Signal et de l'Image (LTSI); Université de Rennes (UR)-Institut National de la Santé et de la Recherche Médicale (INSERM); Institut de recherche en santé, environnement et travail (Irset); Université d'Angers (UA)-Université de Rennes (UR)-École des Hautes Études en Santé Publique EHESP (EHESP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ); Institut de Génétique et Développement de Rennes (IGDR); Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ); Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ); Facility for Artificial Intelligence and Image Analysis (FAIIA); None
    • بيانات النشر:
      HAL CCSD
      MDPI
    • الموضوع:
      2023
    • Collection:
      Université de Rennes 1: Publications scientifiques (HAL)
    • نبذة مختصرة :
      International audience ; Mismatch repair deficiency (d-MMR)/microsatellite instability (MSI), KRAS, and BRAF mutational status are crucial for treating advanced colorectal cancer patients. Traditional methods like immunohistochemistry or polymerase chain reaction (PCR) can be challenged by artificial intelligence (AI) based on whole slide images (WSI) to predict tumor status. In this systematic review, we evaluated the role of AI in predicting MSI status, KRAS, and BRAF mutations in colorectal cancer. Studies published in PubMed up to June 2023 were included (n = 17), and we reported the risk of bias and the performance for each study. Some studies were impacted by the reduced number of slides included in the data set and the lack of external validation cohorts. Deep learning models for the d-MMR/MSI status showed a good performance in training cohorts (mean AUC = 0.89, [0.74–0.97]) but slightly less than expected in the validation cohort when available (mean AUC = 0.82, [0.63–0.98]). Contrary to the MSI status, the prediction of KRAS and BRAF mutations was less explored with a less robust methodology. The performance was lower, with a maximum of 0.77 in the training cohort, 0.58 in the validation cohort for KRAS, and 0.82 AUC in the training cohort for BRAF.
    • Relation:
      hal-04380278; https://hal.science/hal-04380278; https://hal.science/hal-04380278/document; https://hal.science/hal-04380278/file/diagnostics-14-00099-v3.pdf
    • الرقم المعرف:
      10.3390/diagnostics14010099
    • الدخول الالكتروني :
      https://hal.science/hal-04380278
      https://hal.science/hal-04380278/document
      https://hal.science/hal-04380278/file/diagnostics-14-00099-v3.pdf
      https://doi.org/10.3390/diagnostics14010099
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.4E2095FA