Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Navier-Stokes equations in the half space with non compatible data

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Dipartimento di Matematica e Informatica Palermo; Università degli studi di Palermo - University of Palermo; Laboratoire Analyse et de Mathématiques Appliquées (LAMA); Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel
    • بيانات النشر:
      HAL CCSD
      Springer Verlag
    • الموضوع:
      2024
    • نبذة مختصرة :
      International audience ; In this paper we shall consider the Navier-Stokes equations in the half plane with Euler-type initial conditions, i.e. initial conditions which have a non-zero tangential component at the boundary. Under analyticity assumptions for the data, we shall prove that the solution exists for a small time independent of the viscosity. The solution is constructed through a composite asymptotic expansion involving the solutions of the Euler and Prandtl equations, plus an error term. The norm of the error goes to zero with the square root of the viscosity. The Prandtl solution contains a singular term, which influences the regularity of the error. The error term is written as the sum of a first order Euler correction, a first order Prandtl correction, and a further error term. The use of an analytic setting is mainly due to the Prandtl equation.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2202.09415; ARXIV: 2202.09415
    • الرقم المعرف:
      10.1007/s00021-024-00863-6
    • الدخول الالكتروني :
      https://cnrs.hal.science/hal-04266780
      https://cnrs.hal.science/hal-04266780v1/document
      https://cnrs.hal.science/hal-04266780v1/file/2202.09415.pdf
      https://doi.org/10.1007/s00021-024-00863-6
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.4BFB6249