Relation: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/65966/doc; https://revistas.unal.edu.co/index.php/biotecnologia/article/view/65966/pdf; Acevedo, E., Galindo-Castaneda, T., Prada, F., Navia, M., & Romero, H. M. (2014). Phosphate-solubilizing microorganisms associated with the rhizosphere of oil palm (Elaeis guineensis Jacq.) in Colombia. Applied Soil Ecology, 80, 26-33.; Angulo, V. C., Sanfuentes, E. A., Rodríguez, F., & Sossa, K. E. (2014). Caracterización de rizobacterias promotoras de crecimiento en plántulas de Eucalyptus nitens. Revista Argentina de Microbiología, 46(4), 338–347.; Asuming, S., & Aferi, N. K. (2014). Isolation of phosphate solubilizing bacteria from tropical soil. Global Advanced Research Journal of Agricultural Science, 3(1), 008-015.; Arun, K. S. (2007). Bio-fertilizers for sustainable agriculture. Mechanism of P-solubilization. Sixth edition. Jodhpur, India: Agribios publishers.; Badía, M. M. R., Hernández, B. T., Murrel, J. A. L., Mahillon, J., & Pérez, M. H. (2011). Aislamiento y caracterización de cepas de Bacillus asociadas al cultivo del arroz (Oryza sativa L.). Revista Brasileira de Agroecologia, 6(1), 90-99.; Behera, B. C., Singdevasachan, S. K., Mishra, R. R., Dutta, S. K., & Thatoi, H. N. (2014). Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrive – A review. Biocatalysis and Agricultural Biotechnology, 3(2), 97-110.; Beltrán, M. E. (2014). La solubilización de fosfatos como estrategia microbiana para promover el crecimiento vegetal. Corpoica Ciencia y Tecnología Agropecuaria, 15(1),101-113.; Beneduzi, A., Peres, D., Vargas, L. K., Bodanese, M. H., & Passaglia, L. M. P. (2008). Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Applied Soil Ecology, 39, 311-32.; Bolívar, H. J., Contreras, M. L., & Teherán, L. G. (2016). Burkholderia tropica una bacteria con gran potencial para su uso en la agricultura. Revista Especializada en Ciencias Químico-Biológicas, 19(2),102-108.; Chandna, P., Nain, L., Singh S., & Kuhad, R. C. (2013). Assessment of bacterial diversity during composting of agricultural byproducts. BMC Microbiology, 13, 1-14.; Chen, J. H., Tian, X. R., Ruan, Y., Yang, L. L., He, Z. Q., Tang, S. K., Li, W. J., Shi, H., & Chen, Y. G. (2015). Bacillus crassostreae sp. nov., isolated from an oyster (Crassostrea hongkongensis). International Journal of Systematic and Evolutionary Microbiology, 65, 1561–1566.; Cisneros, C., Patiño, C., & Sánchez de P., M. (2014). Solubilización de fosfatos por microorganismos asociados a suelos de tres agroecosistemas cafeteros de la zona andina colombiana. En: XVII Congreso Colombiano de la Ciencia del Suelo (pp. 283-287). Popayán, Colombia: Editorial Sociedad Colombiana de la Ciencia del Suelo.; Cisneros, C., & Sánchez de P., M. (2015). Solubilización de fosfatos por hongos asociados a un Andisol de tres agroecosistemas cafeteros de la región andina colombiana. Ingenium, 9(25), 37-46.; Cisneros, C., Sánchez de P., M., & Menijivar, J. C. (2017). Efecto de bacterias solubilizadoras de fosfatos sobre el desarrollo de plántulas de café. Agronomía Mesoamericana, 28(1), 149-158.; Dastager, S. G., Shan, T., Krishnamurthi, S., Jae, L., & Wen, L. (2014). Kocuria indica sp. nov., isolated from a sediment simple. International Journal of Systematic and Evolutionary Microbiology, 64, 869–874.; Goswami, D., Pithwa, S., Dhandhukia, P., & Thakker, J. N. (2014). Delineating Kocuria turfanensis 2M4 as a credible PGPR: a novel IAA-producing bacteria isolated from saline desert. Journal of Plant Interactions, 9(1), 566–576.; Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.; Kaur, G., & Reddy, M. S. (2014). Role of phosphate-solubilizing bacteria in improving the soil fertility and crop productivity in organic farming. Archives of Agronomy and Soil Science, 60(4), 549–564.; Khan, M. S., Zaidi, A., & Wani, P. A. (2007). Role of phosphate-solubilizing microorganisms in sustainable agriculture – A review. Agronomy for Sustainable Development, 27, 29–43.; Khan, M. S., Zaidi, A., Wani, P. A., & Oves, M. (2009). Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environmental Chemistry Letters, 7, 1-19.; Khan, M. S., Zaidi, A., Ahemad, M., Oves, M., & Wani, P. A. (2010). Plant growth promotion by phosphate solubilizing fungi-current perspective. Archives of Agronomy and Soil Science, 56, 73-98.; Kumar, S., Dhankhar, S., Arya, V. P., Yadav, S., & Yadav, J. P. (2012). Antimicrobial activity of Salvadora oleoides Decne. against some microorganisms. Journal of Medicinal Plants Research, 6(14), 2754-2760.; Mahdi, S. S., Hassan, G.I., Hussain, A., & Rasool, F. (2011). Phosphorus Availability Issue- Its Fixation and Role of Phosphate Solubilizing Bacteria in Phosphate Solubilization. Research Journal of Agricultural Sciences, 2(1), 174-179.; Maheswar, N. U., & Sathiyavani, G. (2012). Solubilization of phosphate by Bacillus Sps. from groundnut rhizosphere (Arachishypogaea L). Journal of Chemical and Pharmaceutical Research, 4(8), 4007-4011.; Malusá, E., Sas, L., & Ciesielska, J. (2012). Review Article. Technologies for Beneficial Microorganisms Inocula Used as Biofertilizers. The Scientific World Journal, 2012, 1-12.; Mardad, I., Serrano, A., & Soukri, A. (2013). Solubilization of inorganic phosphate and production of organic acids by bacteria isolated from a Moroccan mineral phosphate deposit. African Journal of Microbiology Research, 7(8), 626- 635.; Matías, S. R., Pagano, M. C., Muzzi, F. C., Oliveira, C. A., Almeida, A., Horta, S. N., & Scotti, M. R. (2009). Effect of rhizobia. mycorrhizal fungi and phosphate-solubilizing microorganisms in the rhizosphere of native plants used to recover an iron ore area in Brazil. European Journal of Soil Biology, 45, 259-266.; Mishra, D. J., Singh, R., Mishra, U. K., & Shahi, S. K. (2013). Role of Bio-Fertilizer in Organic Agriculture: A Review. Research Journal of Recent Sciences, 2(ISC-2012), 39-41.; Mutua, G. K., Karanja, N.K., Ayuke, F., Ndukhu, H., & Kimenju, J. W. (2011). The potential of Bacillus subtilis and Rhizobium leguminosarum in controlling plant-parasitic nematodes in farmers’ fields. African Crop Science Conference Proceedings, 10, 209 – 215.; Panhwar, Q. A., Othman, R., Rahman, Z. A., Meon, S., & Ismail, M. R. (2012). Isolation and characterization of phosphate-solubilizing bacteria from aerobic rice. African Journal of Biotechnology, 11, 2711-2727.; Patiño, C., & Sánchez de P., M. (2012). Aislamiento e identificación de bacterias solubilizadoras de fosfatos, habitantes de la rizósfera de chontaduro (B. gassipaes Kunth). Biotecnología en el Sector Agropecuario y Agroindustrial, 10(2), 177 – 187.; Pérez, E., Sulbarán, M., Ball, M. M., & Yarzábal, L. A. (2007). Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biology & Biochemistry, 39, 2905-2914.; Prada, L. D. (2013). Identificación de ácidos orgánicos causantes de la solubilización de fósforo inorgánico sintetizados por actinomicetos aislados de suelos en los andes orientales colombianos. (Tesis de Maestría en Ciencias – Microbiología). Universidad Nacional de Colombia, Bogotá, Colombia.; Sambrook, J., Fritschi, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual. New York: Cold Spring Harbor Laboratory Press.; Sánchez, J. A., & Rubiano, Y. (2015). Procesos específicos de formación en Andisoles, Alfisoles y Ultisoles en Colombia. Revista EIA, 12(2), E85-E97.; Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Review. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus, 2, 587.; Tejera, B., Heydrich, M., & Rojas, M. M. (2013). Aislamiento de Bacillus solubilizadores de fosfatos asociados al cultivo del arroz. Agronomía Mesoamericana, 24(2), 357-364.; Vyas, P., & Gulati, A. (2009). Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiology, 9, 174.; Zhao, K., Penttinen, P., Zhang, X., Ao, X., Liu, M., Yu, X., & Chen, Q. (2014). Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiological Research, 169, 76–82.; https://revistas.unal.edu.co/index.php/biotecnologia/article/view/65966
No Comments.