Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Wind Entrainment in Jets with Reversing Buoyancy: Implications for Volcanic Plumes

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Institut de Physique du Globe de Paris (IPGP (UMR_7154)); Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité); RAVEX project (ANR contract ANR-16-CE03-0002) and STRAP project (ANR contract ANR-14-CE03-0004); ANR-16-CE03-0002,RAVEX,Développement d'une approche intégrée pour la réduction des Risques Associés au Volcanisme EXplosif, de la recherche sur l'aléa aux outils de gestion de crise : le cas de la Martinique(2016); ANR-14-CE03-0004,STRAP,Synergie Transdisciplinaire pour Répondre aux Aléas liées au Panaches volcaniques(2014); ANR-18-IDEX-0001,Université de Paris,Université de Paris(2018)
    • بيانات النشر:
      HAL CCSD
      American Geophysical Union
    • الموضوع:
      2020
    • نبذة مختصرة :
      International audience ; Explosive volcanic eruptions commonly undergo a transition from stable plume to collapsing fountain with associated destructive pyroclastic density currents. A major goal in physical volcanology is to predict quantitatively the limit between the flow regimes as a function of the source and environmental conditions. Atmospheric winds influence the dynamics and stability of the column causing bending and enhancing turbulent air entrainment. However, the predictions made with 1-D models of volcanic plumes accounting for the presence of wind strongly depend on the wind entrainment coefficient β, a parameter whose value varies in the literature. Here we present a new theoretical model to identify an analytical criterion for column collapse in windy conditions. We then present new laboratory experiments on turbulent jets with reversing buoyancy rising in a crossflow in order to better constrain β. Our results show that a single value of β = 0.5 can be used to describe the behavior of laboratory jets with arbitrary buoyancy. The results allow us to parameterize our 1-D model of volcanic plumes PPM and to show the crucial importance of wind gradient and profile on volcanic column dynamics through the use of the 1991 Mt. Hudson eruption as a case study. Finally, we propose a new transition diagram between the stable plume and collapsing fountain regimes, as a function of wind speed and mass discharge rate only, which can be used for the rapid assessment of major hazards during an explosive eruption.
    • Relation:
      hal-02988425; https://hal.science/hal-02988425; https://hal.science/hal-02988425/document; https://hal.science/hal-02988425/file/Michaud-Dubuy_etal_2020.pdf
    • الرقم المعرف:
      10.1029/2020jb020136
    • Rights:
      http://creativecommons.org/licenses/by-nc-nd/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.4B19F794