Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Denoising of ictal EEG data using semi-blind source separation methods based on time-frequency priors

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Biomedical Signal and Image Processing Laboratory Teheran (BiSIPL); School of Electrical Engineering-Sharif University of Technology Tehran (SUT); Laboratoire Traitement du Signal et de l'Image (LTSI); Université de Rennes (UR)-Institut National de la Santé et de la Recherche Médicale (INSERM); Parcimonie et Nouveaux Algorithmes pour le Signal et la Modélisation Audio (PANAMA); Inria Rennes – Bretagne Atlantique; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE (IRISA-D5); Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA); Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
    • بيانات النشر:
      HAL CCSD
      Institute of Electrical and Electronics Engineers
    • الموضوع:
      2015
    • Collection:
      Inserm: HAL (Institut national de la santé et de la recherche médicale)
    • نبذة مختصرة :
      International audience ; Removing muscle activity from ictal ElectroEn-cephaloGram (EEG) data is an essential preprocessing step in diagnosis and study of epileptic disorders. Indeed, at the very beginning of seizures, ictal EEG has a low amplitude and its morphology in the time domain is quite similar to muscular activity. Contrary to the time domain, ictal signals have specific characteristics in the time-frequency domain. In this paper, we use the time-frequency signature of ictal discharges as a priori information on the sources of interest. To extract the time-frequency signature of ictal sources, we use the Canonical Correlation Analysis (CCA) method. Then we propose two time-frequency based semi-blind source separation approaches, namely the Time-Frequency-Generalized EigenValue Decomposition (TF-GEVD) and the Time-Frequency-Denoising Source Separation (TF-DSS), for the denoising of ictal signals based on these time-frequency signatures. The performance of the proposed methods is compared with that of CCA and Independent Component Analysis (ICA) approaches for the denoising of simulated ictal EEGs and of real ictal data. The results show the superiority of the proposed methods in comparison with CCA and ICA. Index Terms—Generalized EigenValue Decomposition (GEVD), Denoising Source Separation (DSS), Canonical Correlation Analysis (CCA), Semi-blind source separation, ElectroEncephaloGram (EEG), fast ictal activity, epileptic seizure
    • Relation:
      info:eu-repo/semantics/altIdentifier/pmid/25095269; hal-01246033; https://hal.science/hal-01246033; https://hal.science/hal-01246033/document; https://hal.science/hal-01246033/file/TF-GEVD-DSS.pdf; PUBMED: 25095269
    • الرقم المعرف:
      10.1109/JBHI.2014.2336797
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.4AFD95E1