Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Spatio-temporal mixture process estimation to detect population dynamical changes

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Centre de Mathématiques Appliquées de l'Ecole polytechnique (CMAP); École polytechnique (X); Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS); Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)); École Pratique des Hautes Études (EPHE); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPCité); Health data- and model- driven Knowledge Acquisition (HeKA); Inria de Paris; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPCité)-École Pratique des Hautes Études (EPHE); Hôpital Européen Georges Pompidou APHP (HEGP); Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO); This work was supported by a grant from Région Île-de-France.; This work was supported by a grant of Paris Artificial Intelligence Research Institute : ANR-19-P3IA-0001 - PRAIRIE IA - Paris Artificial Intelligence Research Institute (2019).; ANR-19-P3IA-0001,PRAIRIE,PaRis Artificial Intelligence Research InstitutE(2019)
    • بيانات النشر:
      HAL CCSD
      Elsevier
    • الموضوع:
      2022
    • Collection:
      EPHE (Ecole pratique des hautes études, Paris): HAL
    • نبذة مختصرة :
      International audience ; Population monitoring is a challenge in many areas such as public health or ecology. We propose a method to model and monitor population distributions over space and time, in order to build an alert system for spatio-temporal data evolution. Assuming that mixture models can correctly model populations, we propose new versions of the Expectation-Maximization algorithm to better estimate both the number of clusters together with their parameters. We then combine these algorithms with a temporal statistical model, allowing to detect dynamical changes in population distributions, and name it a spatio-temporal mixture process (STMP). We test STMP on synthetic data, and consider several different behaviors of the distributions, to adjust this process. Finally, we validate STMP on a real data set of positive diagnosed patients to corona virus disease 2019. We show that our pipeline correctly models evolving real data and detects epidemic changes.
    • Relation:
      info:eu-repo/semantics/altIdentifier/pmid/35346441; hal-02933217; https://hal.science/hal-02933217; https://hal.science/hal-02933217v3/document; https://hal.science/hal-02933217v3/file/STMPHAL_3.pdf; PUBMED: 35346441; PUBMEDCENTRAL: PMC8864896
    • الرقم المعرف:
      10.1016/j.artmed.2022.102258
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.4AA418EA