Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Analyse théorique de l’apprentissage avec des fonctions de similarités pour l’adaptation de domaine

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Images et Modèles; Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS); Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2018
    • Collection:
      Université Jean Monnet – Saint-Etienne: HAL
    • الموضوع:
    • نبذة مختصرة :
      International audience ; Similarity learning is an active research area in machine learning that tackles the problem of finding a similarity function tailored to an observable data sample in order to achieve efficient classification. This learning scenario has been generally formalized by the means of a (, γ, τ)−good similarity learning framework in the context of supervised classification and has been shown to have important theoretical guarantees. In this paper , we propose to extend the theoretical analysis of similarity learning to the domain adaptation setting, a particular situation occurring when the similarity is learned and then deployed on samples following different probability distributions. We give a new definition of an (, γ)−good similarity for domain adaptation and prove several results quantifying the performance of a similarity function on a target domain after it has been trained on a source domain. We particularly show that if the source domain support contains that of the target then a notable improvement of the adaptation is achievable.
    • Relation:
      hal-02063285; https://hal.science/hal-02063285; https://hal.science/hal-02063285/document; https://hal.science/hal-02063285/file/cap2018%281%29.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.4A84220D