Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

When are the norms of the Riesz projection and the backward shift operator equal to one?

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Shargorodsky, Eugene; Karlovych, Oleksiy
  • المصدر:
    Shargorodsky , E & Karlovych , O 2023 , ' When are the norms of the Riesz projection and the backward shift operator equal to one? ' , JOURNAL OF FUNCTIONAL ANALYSIS , vol. 285 , no. 12 , 110158 . https://doi.org/10.1016/j.jfa.2023.110158
  • نوع التسجيلة:
    article in journal/newspaper
  • اللغة:
    English
  • معلومة اضافية
    • الموضوع:
      2023
    • Collection:
      King's College, London: Research Portal
    • نبذة مختصرة :
      The lower estimate by Gohberg and Krupnik (1968) and the upper estimate by Hollenbeck and Verbitsky (2000) for the norm of the Riesz projection P on the Lebesgue space L p lead to ‖P‖ L p →L p =1/sin⁡(π/p) for every p∈(1,∞). Hence L 2 is the only space among all Lebesgue spaces L p for which the norm of the Riesz projection P is equal to one. Banach function spaces X are far-reaching generalisations of Lebesgue spaces L p . We prove that the norm of P is equal to one on the space X if and only if X coincides with L 2 and there exists a constant C∈(0,∞) such that ‖f‖ X =C‖f‖ L 2 for all functions f∈X. Independently from this, we also show that the norm of P on X is equal to one if and only if the norm of the backward shift operator S on the abstract Hardy space H[X] built upon X is equal to one.
    • File Description:
      application/pdf
    • الرقم المعرف:
      10.1016/j.jfa.2023.110158
    • الدخول الالكتروني :
      https://doi.org/10.1016/j.jfa.2023.110158
      https://kclpure.kcl.ac.uk/portal/en/publications/68da6b19-a7b9-4abe-af30-3d569d34d2f0
      https://kclpure.kcl.ac.uk/ws/files/232180484/1_s2.0_S0022123623003154_main.pdf
      http://www.scopus.com/inward/record.url?scp=85171485826&partnerID=8YFLogxK
    • Rights:
      info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.49904C16