Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Evidence for the leaching of dissolved organic phosphorus to depth

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Elsevier
    • الموضوع:
      2021
    • Collection:
      Lincoln University (New Zealand): Lincoln U Research Archive
    • الموضوع:
    • نبذة مختصرة :
      Phosphorus (P) can leach from topsoil in inorganic and organic forms. While some evidence has shown inorganic P (orthophosphate) can leach to depth in some soils, less is known of dissolved organic P (DOP). This is not helped by a paucity DOP data for groundwater. We hypothesized that DOP species would leach in greater amounts to depth and at a faster rate through aquifer gravels than orthophosphate. We applied superphosphate with or without dung to a low P-sorption soil under pasture and irrigation. Between 0.7 (control) and 2.4 (dung +superphosphate) kg P ha⁻¹ was leached through 30 cm with a mean ratio of DRP to DOP of 1.5. At 50 cm, 0.7 and 1.3 kg P ha⁻¹ was leached with the DRP to DOP ratio decreasing to 1.1 due to greater DOP leaching (or DRP sorption). There was little difference in DRP losses measured at 50 and 150 cm depth. All DOP compounds except the monoester – inositol hexakisphosphate were leached at a faster rate than orthophosphate through aquifer gravels. These data suggest that where low P-sorption soils overlay similarly low P-sorption aquifers, DOP may reach groundwater at a faster rate than orthophosphate. Furthermore, as many DOP species are bioavailable to periphyton, our data suggest that DOP should be included in the assessment of the risk of P contamination of groundwater where connection to baseflow could be a long-term stimulant of periphyton growth.
    • File Description:
      11 pages; Print-Electronic
    • ISSN:
      1879-1026
      0048-9697
    • Relation:
      The original publication is available from Elsevier - https://doi.org/10.1016/j.scitotenv.2020.142392 - http://dx.doi.org/10.1016/j.scitotenv.2020.142392; Science of the Total Environment; https://doi.org/10.1016/j.scitotenv.2020.142392; S0048-9697(20)35921-0; https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=elements_prod&SrcAuth=WosAPI&KeyUT=WOS:000600537400032&DestLinkType=FullRecord&DestApp=WOS_CPL; 33017757 (pubmed); https://hdl.handle.net/10182/13397
    • الرقم المعرف:
      10.1016/j.scitotenv.2020.142392
    • الدخول الالكتروني :
      https://doi.org/10.1016/j.scitotenv.2020.142392
      https://hdl.handle.net/10182/13397
      https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=elements_prod&SrcAuth=WosAPI&KeyUT=WOS:000600537400032&DestLinkType=FullRecord&DestApp=WOS_CPL
    • Rights:
      © 2020 The Authors. Published by Elsevier B.V. ; Attribution-NonCommercial-NoDerivatives ; https://creativecommons.org/licenses/by-nc-nd/4.0/
    • الرقم المعرف:
      edsbas.498A345F