Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Sampling large hyperplane-truncated multivariate normal distributions

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      CY Cergy Paris Université (CY); Analyse, Géométrie et Modélisation (AGM - UMR 8088); Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY); École des Mines de Saint-Étienne (Mines Saint-Étienne MSE); Institut Mines-Télécom Paris (IMT); Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS); Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne); Université Clermont Auvergne (UCA)-Université Clermont Auvergne (UCA); Institut Henri Fayol (FAYOL-ENSMSE); Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT); Département Génie mathématique et industriel (FAYOL-ENSMSE); Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Institut Henri Fayol
    • بيانات النشر:
      HAL CCSD
      Springer Verlag
    • الموضوع:
      2023
    • Collection:
      Mines de Saint-Etienne: Archives Ouvertes / Open Archive (HAL)
    • نبذة مختصرة :
      International audience ; Generating multivariate normal distributions is widely used in various fields, including engineering, statistics, finance and machine learning. In this paper, simulating large multivariate normal distributions truncated on the intersection of a set of hyperplanes is investigated. Specifically, the proposed methodology focuses on cases where the prior multivariate normal is extracted from a stationary Gaussian process (GP). It is based on combining both Karhunen-Loève expansions (KLE) and Matheron’s update rules (MUR). The KLE requires the computation of the decomposition of the covariance matrix of the random variables, which can become expensive when the random vector is too large. To address this issue, the input domain is split in smallest subdomains where the eigendecomposition can be computed. Due to the stationary property, only the eigendecomposition of the first subdomain is required. Through this strategy, the computational complexity is drastically reduced. The mean-square truncation and block errors have been calculated. The efficiency of the proposed approach has been demonstrated through both synthetic and real data studies.
    • Relation:
      hal-03741860; https://hal.science/hal-03741860; https://hal.science/hal-03741860v2/document; https://hal.science/hal-03741860v2/file/highdimMVN.pdf
    • الرقم المعرف:
      10.1007/s00180-023-01416-7
    • الدخول الالكتروني :
      https://hal.science/hal-03741860
      https://hal.science/hal-03741860v2/document
      https://hal.science/hal-03741860v2/file/highdimMVN.pdf
      https://doi.org/10.1007/s00180-023-01416-7
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.496134FF