Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Integrating physics in deep learning algorithms: a force field as a PyTorch module

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Oxford University Press (OUP)
    • الموضوع:
      2024
    • نبذة مختصرة :
      MOTIVATION: Deep learning algorithms applied to structural biology often struggle to converge to meaningful solutions when limited data is available, since they are required to learn complex physical rules from examples. State-of-the-art force-fields, however, cannot interface with deep learning algorithms due to their implementation. RESULTS: We present MadraX, a forcefield implemented as a differentiable PyTorch module, able to interact with deep learning algorithms in an end-to-end fashion. AVAILABILITY AND IMPLEMENTATION: MadraX documentation, together with tutorials and installation guide, is available at madrax.readthedocs.io. ; sponsorship: We are grateful to the CRG Core Technologies Programme for their support and assistance in this work. (Flanders Institute for Biotechnology, CRG Core Technologies Programme) ; status: Published
    • File Description:
      application/pdf
    • Relation:
      https://lirias.kuleuven.be/handle/20.500.12942/738826; https://lirias.kuleuven.be/retrieve/754117; https://doi.org/10.1093/bioinformatics/btae160; https://pubmed.ncbi.nlm.nih.gov/38514422
    • الرقم المعرف:
      10.1093/bioinformatics/btae160
    • الدخول الالكتروني :
      https://lirias.kuleuven.be/handle/20.500.12942/738826
      https://hdl.handle.net/20.500.12942/738826
      https://lirias.kuleuven.be/retrieve/754117
      https://doi.org/10.1093/bioinformatics/btae160
      https://pubmed.ncbi.nlm.nih.gov/38514422
    • Rights:
      info:eu-repo/semantics/openAccess ; public ; https://creativecommons.org/licenses/by/4.0/
    • الرقم المعرف:
      edsbas.48332E14