Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Synthetic Driver Image Generation for Human Pose-Related Tasks

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS); Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL); Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS); Extraction de Caractéristiques et Identification (imagine); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL); Project Region AURA AutoBehave 2019
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2023
    • Collection:
      HAL Lyon 1 (University Claude Bernard Lyon 1)
    • الموضوع:
    • نبذة مختصرة :
      International audience ; The interest in driver monitoring has grown recently, especially in the context of autonomous vehicles. However, the training of deep neural networks for computer vision requires more and more images with significant diversity, which does not match the reality of the field. This lack of data prevents networks to be properly trained for certain complex tasks such as human pose transfer which aims to produce an image of a person in a target pose from another image of the same person. To tackle this problem, we propose a new synthetic dataset for pose-related tasks. By using a straightforward pipeline to increase the variety between the images, we generate 200k images with a hundred human models in different cars, environments, lighting conditions, etc. We measure the quality of the images of our dataset and compare it with other datasets from the literature. We also train a network for human pose transfer in the synthetic domain using our dataset. Results show that our dataset matches the quality of existing datasets and that it can be used to properly train a network on a complex task. We make both the images with the pose annotations and the generation scripts publicly available.
    • Relation:
      hal-03936401; https://hal.science/hal-03936401; https://hal.science/hal-03936401/document; https://hal.science/hal-03936401/file/Synthetique_HAL.pdf
    • الرقم المعرف:
      10.5220/0011780800003417
    • الدخول الالكتروني :
      https://hal.science/hal-03936401
      https://hal.science/hal-03936401/document
      https://hal.science/hal-03936401/file/Synthetique_HAL.pdf
      https://doi.org/10.5220/0011780800003417
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.46FB8A06