Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A Semiparametric Instrumented Difference-in-Differences Approach to Policy Learning

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Médecine de précision par intégration de données et inférence causale (PREMEDICAL); Inria Sophia Antipolis - Méditerranée (CRISAM); Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Desbrest de santé publique (IDESP); Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM); Zhejiang University Hangzhou, China; ANR-16-IDEX-0006,MUSE,MUSE(2016)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2023
    • Collection:
      Université de Montpellier: HAL
    • نبذة مختصرة :
      Recently, there has been a surge in methodological development for the difference-indifferences (DiD) approach to evaluate causal effects. Standard methods in the literature rely on the parallel trends assumption to identify the average treatment effect on the treated. However, the parallel trends assumption may be violated in the presence of unmeasured confounding, and the average treatment effect on the treated may not be useful in learning a treatment assignment policy for the entire population. In this article, we propose a general instrumented DiD approach for learning the optimal treatment policy. Specifically, we establish identification results using a binary instrumental variable (IV) when the parallel trends assumption fails to hold. Additionally, we construct a Wald estimator, novel inverse probability weighting (IPW) estimators, and a class of semiparametric efficient and multiply robust estimators, with theoretical guarantees on consistency and asymptotic normality, even when relying on flexible machine learning algorithms for nuisance parameters estimation. Furthermore, we extend the instrumented DiD to the panel data setting. We evaluate our methods in extensive simulations and a real data application.
    • الدخول الالكتروني :
      https://hal.science/hal-04242007
      https://hal.science/hal-04242007v1/document
      https://hal.science/hal-04242007v1/file/policy_learning_instrumented_DiD.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.462B995B