Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Performance Analysis of a Backward/Forward Algorithm Adjusted to a Distribution Network with Nonlinear Loads and a Photovoltaic System ; Análisis del desempeño de un algoritmo Backward/Forward ajustado a una red de distribución con cargas no lineales y un sistema fotovoltaico

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Universidad Distrital Francisco José de Caldas
    • الموضوع:
      2023
    • Collection:
      Universidad Distrital de la ciudad de Bogotá: Open Journal Systems
    • نبذة مختصرة :
      Context: The backward/forward (BF) algorithm is a sweep-type technique that has recently been used as a strategy for the power flow analysis of ill-conditioned networks. The purpose of this study is to evaluate the performance of the BF algorithm compared to that of a computational tool such as Simulink, with both strategies adjusted to the operating conditions of a distribution network with nonlinear components (loads and photovoltaic system), unbalanced loads, and harmonic distortion in the voltage and current signals. Method: The study case is a low-voltage distribution network with a radial topology, unbalanced loads, and nonlinear components. The BF algorithm is adjusted to consider two approaches of the Norton model: a coupled admittance matrix and a decoupled admittance matrix. The latter is also used in the network model created in Simulink. The performance of the algorithm is evaluated by analyzing 18 operation scenarios defined according to the presence and use intensity of the loads and solar irradiance levels (low and high). Results: In general, the three strategies could successfully determine the waveform and RMS values of the voltage signals with errors of less than 0,8 and 1,3%, respectively. However, the performance of the strategies for the estimation of current signals and power parameters shows errors of 5-300% depending on the level of solar irradiance at which the photovoltaic system operates. Conclusions: The results show that the BF strategy can be used to analyze unbalanced power grids with increasing penetration of renewable generation and the integration of nonlinear devices, but the performance of this strategy depends on the load model applied to represent the behavior of nonlinear devices and generation systems. ; Contexto: El algoritmo backward/forward (BF) es una técnica de barrido que se ha utilizado recientemente como estrategia para el análisis de flujo de energía de redes mal acondicionadas. El objetivo de este estudio es evaluar el desempeño del algoritmo BF comparado con el ...
    • File Description:
      application/pdf; text/xml
    • Relation:
      https://revistas.udistrital.edu.co/index.php/reving/article/view/20632/19579; https://revistas.udistrital.edu.co/index.php/reving/article/view/20632/19844; S. Ouali and A. Cherkaoui, “An improved backward/forward sweep power flow method based on a new network information organization for radial distribution systems,” J. Elect. Comp. Eng., vol. 2020, art. 5643410, 2020. https://doi.org/10.1155/2020/5643410; M. Milovanović, J. Radosavljević, and B. Perović, “A backward/forward sweep power flow method for harmonic polluted radial distribution systems with distributed generation units,” Int. Trans. Elect. Energy Syst., vol. 30, no. 5, pp. 1-17, 2020. https://doi.org/10.1002/2050-7038.12310; A. Garcés-Ruiz, “Flujo de potencia en redes de distribución eléctrica trifásicas no equilibradas utilizando Matlab: Teoría, análisis y simulación cuasi-dinámica,” Ing., vol. 27, no. 3, art. e19252, 2022. https://doi.org/10.14483/23448393.19252; A. Suchite-Remolino, H. F. Ruiz-Paredes, and V. Torres-Garcia, “A new approach for PV nodes using an efficient backward/forward sweep power flow technique,” IEEE Latin America Trans., vol. 18, no. 6, pp. 992-999, 2020. https://doi.org/10.1109/TLA.2020.9099675; R. Taheri, A. Khajezadeh, M. H. Rezaeian Koochi, and A. Sharifi Nasab Anari, “Line independency-based network modelling for backward/forward load flow analysis of electrical power distribution systems,” Turkish J. Elect. Eng. Comp. Sci., vol. 27, no. 6, pp. 4551-4566, 2019. https://doi.org/10.3906/elk-1812-137; X. Wang, M. Shahidehpour, C. Jiang, W. Tian, Z. Li, and Y. Yao, “Three-phase distribution power flow calculation for loop-based microgrids,” IEEE Trans. Power Syst., vol. 33, no. 4, pp. 3955-3967, 2018. https://doi.org/10.1109/TPWRS.2017.2788055; A. Al-sakkaf and M. AlMuhaini, “Power flow analysis of weakly meshed distribution network including DG,” Eng. Technol. App. Sci. Res., vol. 8, no. 5, pp. 3398-3404, 2018. https://doi.org/10.48084/etasr.2277; M. Milovanović, J. Radosavljević, B. Perović, and M. Dragičević, “Power flow in radial distribution systems in the presence of harmonics,” Int. J. Elect. Eng. Comp., vol. 2, no. 1, pp. 10-19, 2019. https://doi.org/10.7251/IJEEC1801011M; D. Buła and M. Lewandowski, “Steady state simulation of a distributed power supplying system using a simple hybrid time-frequency model,” App. Math. Comp., vol. 319, pp. 195-202, 2018. https://doi.org/10.1016/j.amc.2017.02.028; M. A. Amini, A. Jalilian, and M. R. Pour Behbahani, “Fast network reconfiguration in harmonic polluted distribution network based on developed backward/forward sweep harmonic load flow,” Elect. Power Syst. Res., vol. 168, pp. 295-304, 2019. https://doi.org/10.1016/j.epsr.2018.12.006; J. C. Hernandez, F. J. Ruiz-Rodriguez, F. Jurado, and F. Sanchez-Sutil, “Tracing harmonic distortion and voltage unbalance in secondary radial distribution networks with photovoltaic uncertainties by an iterative multiphase harmonic load flow,” Elect. Power Syst. Res., vol. 185, art. 106342, 2020. https://doi.org/10.1016/j.epsr.2020.106342; F. J. Ruiz-Rodriguez, J. C. Hernandez, and F. Jurado, “Iterative harmonic load flow by using the point-estimate method and complex affine arithmetic for radial distribution systems with photovoltaic uncertainties,” Int. J. Elect. Power Energy Syst., vol. 118, art. 105765, 2020. https://doi.org/10.1016/j.ijepes.2019.105765; A. M. Kettner, L. Reyes-Chamorro, J. K. Maria Becker, Z. Zou, M. Liserre, and M. Paolone, “Harmonic power-flow study of polyphase grids with converter-interfaced distributed energy resources-Part I: Modeling framework and algorithm,” IEEE Trans. Smart Grid, vol. 13, no. 1, pp. 458-469, 2022. https://doi.org/10.1109/TSG.2021.3120108; W. Sun and G. P. Harrison, “Distribution network hosting capacity assessment: Incorporating probabilistic harmonic distortion limits using chance constrained optimal power flow,” IET Smart Grid, vol. 5, no. 2, pp. 63-75, 2022. https://doi.org/10.1049/stg2.12052; R. Satish, K. Vaisakh, A. Y. Abdelaziz, and A. El-Shahat, “A novel three-phase harmonic power flow algorithm for unbalanced radial distribution networks with the presence of D-STATCOM devices,” Electronics (Switzerland), vol. 10, no. 21, art. 2663, 2021. https://doi.org/10.3390/electronics10212663; R. Satish, P. Kantarao, and K. Vaisakh, “A new algorithm for harmonic impacts with renewable DG and non-linear loads in smart distribution networks,” Technol. Econ. Smart Grids Sust. Energy, vol. 7, no. 1, art. 8, 2022. https://doi.org/10.1007/s40866-022-00134-1; D. Chathurangi, U. Jayatunga, M. Rathnayake, A. Wickramasinghe, A. Agalgaonkar, and S. Perera, “Potential power quality impacts on LV distribution networks with high penetration levels of solar PV,” presented at Int. Conf. Harmon. Qual. Power, ICHQP, Ljubljana, Slovenia, 2018. https://doi.org/10.1109/ICHQP.2018.8378890; Z. Deng, G. Todeschini, K. L. Koo, and M. Mulimakwenda, “Modelling renewable energy sources for harmonic assessments in DIgSILENT PowerFactory: Comparison of different approaches,” in 11th Int. Conf. Simul. Mod. Method. Technol. App., SIMULTECH 2021, 2021, pp. 130-140. https://doi.org/10.5220/0010580101300140; W. Yuan, X. Yuan, L. Xu, C. Zhang, and X. Ma, “Harmonic loss analysis of low-voltage distribution network integrated with distributed photovoltaic,” Sustainability (Switzerland), vol. 15, no. 5, art. 4334, 2023. https://doi.org/10.3390/su15054334; S. M. Ahsan, H. A. Khan, A. Hussain, S. Tariq, and N. A. Zaffar, “Harmonic analysis of grid-connected solar PV systems with nonlinear household loads in low-voltage distribution networks,” Sustainability (Switzerland), vol. 13, no. 7, art. 3709, 2021. https://doi.org/10.3390/su13073709; G. Osma-Pinto and G. Ordóñez-Plata, “Measuring factors influencing performance of rooftop PV panels in warm tropical climates,” Solar Energy, vol. 185, pp. 112-123, 2019. https://doi.org/10.1016/j.solener.2019.04.053; G. Osma-Pinto and G. Ordóñez-Plata, “Measuring the effect of forced irrigation on the front surface of PV panels for warm tropical conditions,” Energy Rep., vol. 5, pp. 501-514, 2019. https://doi.org/10.1016/j.egyr.2019.04.010; A. Martinez-Penaloza, L. Carrillo-Sandoval, and G. Osma-Pinto, “Determination and performance analysis of the Norton equivalent models for fluorescents and LED recessed lightings,” presented at 2019 IEEE W. Power Elect. Power Qual. App., PEPQA 2019, Manizales, Colombia, 2019. https://doi.org/10.1109/PEPQA.2019.8851554; A. Martínez-Peñaloza, L. Carrillo-Sandoval, G. Malagón-Carvajal, C. Duarte-Gualdrón, and G. Osma-Pinto, “Determination of parameters and performance analysis of load models for fluorescent recessed lightings before power supply signal,” DYNA (Colombia), vol. 87, no. 215, pp. 163-173, 2020. https://doi.org/10.15446/dyna.v87n215.85239; A. Martínez-Peñaloza and G. Osma-Pinto, “Analysis of the performance of the Norton equivalent model of a photovoltaic system under different operating scenarios,” Int. Review Elect. Eng. – IREE, vol. 16, no. 4, pp. 328-343, 2021. https://doi.org/10.15866/iree.v16i4.20278; A. Martínez Peñaloza, G. Osma-Pinto, and G. Ordóñez-Plata, “Parameter determination of coupled and decoupled admittance matrix methods of the Norton equivalent model for an air extractor,” Tecnura, vol. 26, no. 74, pp. 17-34, 2022. https://doi.org/10.14483/22487638.18806; Z. Guo et al., “Aggregate harmonic load models of residential customers. Part 2: Frequency-domain models,” in 2019 IEEE PES Innov. Smart Grid Technol. Europe, ISGT-Europe, 2019, pp. 1-5. https://doi.org/10.1109/ISGTEurope.2019.8905746; X. Xu et al., “Aggregate harmonic fingerprint models of PV inverters. Part 1: Operation at different powers,” in Int. Conf. Harmon. Qual. Power, ICHQP, 2018 pp. 1-6. https://doi.org/10.1109/ICHQP.2018.8378824; S. Muller et al., “Aggregate harmonic fingerprint models of PV inverters. Part 2: Operation of parallel-connected units,” in Int. Conf. Harmon. Qual. Power, ICHQP, 2018, pp. 1-6. https://doi.org/10.1109/ICHQP.2018.8378835; E. Tavukcu, S. Müller, and J. Meyer, “Assessment of the performance of frequency domain models based on different reference points for linearization,” Renewable Energy Power Qual. J., vol. 17, no. 17, pp. 435-440, 2019. https://doi.org/10.24084/repqj17.337; https://revistas.udistrital.edu.co/index.php/reving/article/view/20632
    • الدخول الالكتروني :
      https://revistas.udistrital.edu.co/index.php/reving/article/view/20632
    • Rights:
      Derechos de autor 2023 Alejandra Martinez-Peñaloza, Gabriel Ordóñez-Plata, German Alfonso Osma-Pinto ; https://creativecommons.org/licenses/by-nc-sa/4.0
    • الرقم المعرف:
      edsbas.452BE98B