Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Exploration of reinforcement learning algorithms for autonomous vehicle visual perception and control ; Exploration des algorithmes d'apprentissage par renforcement pour la perception et le controle d'un véhicule autonome par vision

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Unité d'Informatique et d'Ingénierie des Systèmes (U2IS); École Nationale Supérieure de Techniques Avancées (ENSTA Paris); Flowing Epigenetic Robots and Systems (Flowers); Inria Bordeaux - Sud-Ouest; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Unité d'Informatique et d'Ingénierie des Systèmes (U2IS); École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris); CEA- Saclay (CEA); Commissariat à l'énergie atomique et aux énergies alternatives (CEA); Institut Polytechnique de Paris; David Filliat
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2021
    • Collection:
      HAL-CEA (Commissariat à l'énergie atomique et aux énergies alternatives)
    • نبذة مختصرة :
      Reinforcement learning is an approach to solve a sequential decision making problem. In this formalism, an autonomous agent interacts with an environment and receives rewards based on the decisions it makes. The goal of the agent is to maximize the total amount of rewards it receives. In the reinforcement learning paradigm, the agent learns by trial and error the policy (sequence of actions) that yields the best rewards.In this thesis, we focus on its application to the perception and control of an autonomous vehicle. To stay close to human driving, only the onboard camera is used as input sensor. We focus in particular on end-to-end training, i.e. a direct mapping between information from the environment and the action chosen by the agent. However, training end-to-end reinforcement learning for autonomous driving poses some challenges: the large dimensions of the state and action spaces as well as the instability and weakness of the reinforcement learning signal to train deep neural networks.The approaches we implemented are based on the use of semantic information (image segmentation). In particular, this work explores the joint training of semantic information and navigation.We show that these methods are promising and allow to overcome some limitations. On the one hand, combining segmentation supervised learning with navigation reinforcement learning improves the performance of the agent and its ability to generalize to an unknown environment. On the other hand, it enables to train an agent that will be more robust to unexpected events and able to make decisions limiting the risks.Experiments are conducted in simulation, and numerous comparisons with state of the art methods are made. ; L'apprentissage par renforcement est une approche permettant de résoudre un problème de prise de décision séquentielle. Dans ce formalisme, un agent autonome interagit avec un environnement et reçoit des récompenses en fonction des décisions qu'il prend. L'objectif de l'agent est de maximiser le montant total des récompenses ...
    • Relation:
      NNT: 2021IPPAE007; tel-03273748; https://theses.hal.science/tel-03273748; https://theses.hal.science/tel-03273748/document; https://theses.hal.science/tel-03273748/file/98901_CARTON_2021_archivage.pdf
    • الدخول الالكتروني :
      https://theses.hal.science/tel-03273748
      https://theses.hal.science/tel-03273748/document
      https://theses.hal.science/tel-03273748/file/98901_CARTON_2021_archivage.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.44BAF7A