نبذة مختصرة : In 2021, the International Earth Rotation and Reference Systems Service (IERS) established a working group tasked with conducting the Second Earth Orientation Parameters Prediction Comparison Campaign (2nd EOP PCC) to assess the current accuracy of EOP forecasts. From September 2021 to December 2022, EOP predictions submitted by participants from various institutes worldwide were systematically collected and evaluated. This article summarizes the campaign's outcomes, concentrating on the forecasts of the dX, dY, and dψ, dε components of celestial pole offsets (CPO). After detailing the campaign participants and the methodologies employed, we conduct an in-depth analysis of the collected forecasts. We examine the discrepancies between observed and predicted CPO values and analyze their statistical characteristics such as mean, standard deviation, and range. To evaluate CPO forecasts, we computed the mean absolute error (MAE) using the IERS EOP 14 C04 solution as the reference dataset. We then compared the results obtained with forecasts provided by the IERS. The main goal of this study was to show the influence of different methods used on predictions accuracy. Depending on the evaluated prediction approach, the MAE values computed for day 10 of forecast were between 0.03 and 0.16 mas for dX, between 0.03 and 0.12 mas for dY, between 0.07 and 0.91 mas for dψ, and between 0.04 and 0.41 mas for dε. For day 30 of prediction, the corresponding MAE values ranged between 0.03 and 0.12 for dX, and between 0.03 and 0.14 mas for dY. This research shows that machine learning algorithms are the most promising approach in CPO forecasting and provide the highest prediction accuracy (0.06 mas for dX and 0.08 mas for dY for day 10 of prediction). ; This study was funded by the National Science Centre, Poland under the OPUS call in the Weave programme, Grant number 2021/43/I/ST10/01738. H. Dobslaw is supported by the project DISCLOSE, funded by the German Research Foundation (DO 1311/6-1). Santiago Belda was partially supported ...
Rights: © The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. ; info:eu-repo/semantics/openAccess
No Comments.