Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Inverting brain grey matter models with likelihood-free inference: a tool for trustable cytoarchitecture measurements

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Modelling brain structure, function and variability based on high-field MRI data (PARIETAL); Inria Saclay - Ile de France; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Service NEUROSPIN (NEUROSPIN); Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2021
    • Collection:
      Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
    • نبذة مختصرة :
      Effective characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in diffusion MRI (dMRI). Solving the problem of relating the dMRI signal with cytoarchitectural characteristics calls for the definition of a mathematical model that describes brain tissue via a handful of physiologically-relevant parameters and an algorithm for inverting the model. To address this issue, we propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells. We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model. As opposed to other approaches from the literature, our algorithm yields not only an estimation of the parameter vector θ that best describes a given observed data point x_0 , but also a full posterior distribution p(θ|x_0) over the parameter space. This enables a richer description of the model inversion, providing indicators such as credible intervals for the estimated parameters and a complete characterization of the parameter regions where the model may present indeterminacies. We approximate the posterior distribution using deep neural density estimators, known as normalizing flows, and fit them using a set of repeated simulations from the forward model. We validate our approach on simulations using dmipy and then apply the whole pipeline on two publicly available datasets.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2111.08693; hal-03417406; https://hal.inria.fr/hal-03417406; https://hal.inria.fr/hal-03417406v2/document; https://hal.inria.fr/hal-03417406v2/file/main.pdf; ARXIV: 2111.08693
    • الدخول الالكتروني :
      https://hal.inria.fr/hal-03417406
      https://hal.inria.fr/hal-03417406v2/document
      https://hal.inria.fr/hal-03417406v2/file/main.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.439D812A