Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Evaluation of Off-The-Shelf CNNs for the Representation of Natural Scenes with Large Seasonal Variations

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      CentraleSupélec; Georgia Tech Lorraine Metz; Ecole Nationale Supérieure des Arts et Metiers Metz-Georgia Institute of Technology Atlanta -Ecole Supérieure d'Electricité - SUPELEC (FRANCE)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC); Université Bourgogne Franche-Comté COMUE (UBFC)-Université Bourgogne Franche-Comté COMUE (UBFC); UMI 2958 GeorgiaTech-CNRS; CentraleSupélec UMI GT-CNRS 2958 Université Paris-Saclay
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2017
    • Collection:
      Université de Franche-Comté (UFC): HAL
    • نبذة مختصرة :
      ROBOTICS ; This paper focuses on the evaluation of deep convolutional neural networks for the analysis of images of natural scenes subjected to large seasonal variation as well as significant changes of lighting conditions. The context is the development of tools for long-term natural environment monitoring with an autonomous mobile robot. We report various experiments conducted on a large dataset consisting of a weekly survey of the shore of a small lake over two years using an autonomous surface vessel. This dataset is used first in a place recognition task framed as a classification problem, then in a pose regression task and finally the internal features learned by the network are evaluated for their representation power. All our results are based on the Caffe library and default network structures where possible.
    • Relation:
      hal-01448091; https://hal.science/hal-01448091; https://hal.science/hal-01448091v2/document; https://hal.science/hal-01448091v2/file/bmvc_dl_seasonal.pdf
    • الدخول الالكتروني :
      https://hal.science/hal-01448091
      https://hal.science/hal-01448091v2/document
      https://hal.science/hal-01448091v2/file/bmvc_dl_seasonal.pdf
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.439A0FDF