Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Machine Learning Algorithms Provide Greater Prediction of Response to Scs Than Lead Screening Trial: A Predictive AI-Based Multicenter Study

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      prismatics (PRISMATICS); Centre hospitalier universitaire de Poitiers = Poitiers University Hospital (CHU de Poitiers La Milétrie ); Laboratoire de mathématiques et applications UMR 7348 (LMA Poitiers ); Université de Poitiers = University of Poitiers (UP)-Centre National de la Recherche Scientifique (CNRS); Vrije Universiteit Brussel (VUB); Procédés Alimentaires et Microbiologiques Dijon (PAM); Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté COMUE (UBFC); Institut de Mathématiques de Bourgogne Dijon (IMB); Université de Bourgogne (UB)-Université Bourgogne Franche-Comté COMUE (UBFC)-Centre National de la Recherche Scientifique (CNRS); Dynamiques européennes (DynamE); Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS); Service des Technologies de l’Information et de la Communication (STIC); CEA Cadarache; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA); Institut Pprime UPR 3346 (PPrime Poitiers ); Université de Poitiers = University of Poitiers (UP)-École Nationale Supérieure de Mécanique et d’Aérotechnique Poitiers (ISAE-ENSMA )-Centre National de la Recherche Scientifique (CNRS)
    • بيانات النشر:
      HAL CCSD
      MDPI
    • الموضوع:
      2021
    • Collection:
      Université de Bourgogne (UB): HAL
    • نبذة مختصرة :
      International audience ; Persistent Pain after Spinal Surgery can be successfully addressed by Spinal Cord Stimulation (SCS). International guidelines strongly recommend that a lead trial be performed before any permanent implantation. Recent clinical data highlight some major limitations of this approach. First, it appears that patient outcomes, WITH OR WITHOUT lead trial, are similar. In contrast, during trialing, infection rate drops drastically within time and can compromise the therapy. Using composite pain assessment experience and previous research, we hypothesized that ma-chine learning models could be robust screening tools and reliable predictors of long-term SCS efficacy. We developed several algorithms including logistic regression, Regularized Logistic Regression (RLR), naive Bayes classifier, artificial neural networks, random forest and gradient boosted trees to test this hypothesis and to perform internal and external validations, the objec-tive being to confront model predictions with lead trial results using a 1-year composite out-come from 103 patients. While almost all models have demonstrated superiority on lead trial-ing, the RLR model appears to represent the best compromise between complexity and inter-pretability in prediction of SCS efficacy. These results underscore the need to use AI based-predictive medicine, as a synergistic mathematical approach, aimed at helping implanters to optimize their clinical choices on daily practice.
    • Relation:
      info:eu-repo/semantics/altIdentifier/pmid/34682887; hal-03343630; https://hal.science/hal-03343630; https://hal.science/hal-03343630/document; https://hal.science/hal-03343630/file/jcm-10-04764.pdf; PUBMED: 34682887
    • الرقم المعرف:
      10.3390/jcm10204764
    • الدخول الالكتروني :
      https://hal.science/hal-03343630
      https://hal.science/hal-03343630/document
      https://hal.science/hal-03343630/file/jcm-10-04764.pdf
      https://doi.org/10.3390/jcm10204764
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.427F3B18