Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Wind Field Retrieval from Satellite Radar Systems

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Stoffelen, Ad; Redaño, Àngel; Universitat de Barcelona. Departament d'Astronomia i Meteorologia
    • بيانات النشر:
      Universitat de Barcelona
    • الموضوع:
      2011
    • Collection:
      Universitat de Barcelona: Tesis Doctorals en Xarxa (TDX) / Theses and Dissertations Online
    • الموضوع:
      55
    • نبذة مختصرة :
      Wind observations are essential for determining the atmospheric flow. In particular, sea-surface wind observations are very useful for many meteorological and oceanographic applications. In this respect, most of the satellite remote-sensing radar systems can provide sea-surface wind information. This thesis reviews the current wind retrieval procedures for such systems, identifies the most significant unresolved problems, and proposes new methods to overcome such problems. In order to invert the geophysical model function (GMF), which relates the radar backscatter measurement with the wind speed and direction (unknowns), two independent measurements over the same scene (wind cell) are at least needed. The degree of independence of such measurements is given by the azimuth (view) angle separation among them. This thesis is focused on improving the wind retrieval for determined systems (two or more measurements) with poor azimuth diversity and for underdetermined systems (one single measurement). For such purpose, observations from two different radar systems, i.e., SeaWinds and SAR (Synthetic Aperture Radar), are used. The wind retrieval methods proposed in this book for determined (Multiple Solution Scheme, denoted MSS) and underdetermined (SAR Wind Retrieval Algorithm, denoted SWRA) systems are based on Bayesian methodology, that is, on maximizing the probability of obtaining the "true" wind given the radar measurements and the a priori wind information (often provided by numerical weather prediction models), assuming that all wind information sources contain errors. In contrast with the standard procedure for determined systems, the MSS fully uses the information obtained from inversion, which turns out to positively impact the wind retrieval when poor azimuth diversity. On the other hand, in contrast with the various algorithms used nowadays to resolve the wind vector for underdetermined systems, the SWRA assumes not only that the system can not be solved without additional information (underdetermination ...
    • File Description:
      application/pdf
    • ISBN:
      978-84-688-5194-5
      84-688-5194-9
    • Relation:
      http://www.tdx.cat/TDX-0107104-124436; http://hdl.handle.net/10803/734; B.6645-2004
    • الدخول الالكتروني :
      http://www.tdx.cat/TDX-0107104-124436
      http://hdl.handle.net/10803/734
    • Rights:
      ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ; info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.41C3C84C