Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Brain subtle anomaly detection based on auto-encoders latent space analysis : application to de novo parkinson patients

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Modeling & analysis for medical imaging and Diagnosis (MYRIAD); Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS); Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS); GIN Grenoble Institut des Neurosciences (GIN); Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes (UGA); Modèles statistiques bayésiens et des valeurs extrêmes pour données structurées et de grande dimension (STATIFY); Inria Grenoble - Rhône-Alpes; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK); Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ); Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ); Université Grenoble Alpes (UGA); G. Oudoumanessah was financially supported by the AURA region. This work was granted access to the HPC resources of IDRIS under the allocation 2022-AD011012813R1 made by GENCI.It was partially funded by French program “Investissement d’Avenir” run by the Agence Nationale pour la Recherche (ANR-11-INBS-0006).; ANR-11-INBS-0006,FLI,France Life Imaging(2011)
    • بيانات النشر:
      HAL CCSD
      IEEE
    • الموضوع:
      2023
    • Collection:
      Université Jean Monnet – Saint-Etienne: HAL
    • الموضوع:
    • نبذة مختصرة :
      International audience ; Neural network-based anomaly detection remains challenging in clinical applications with little or no supervised information and subtle anomalies such as hardly visible brain lesions. Among unsupervised methods, patch-based auto-encoders with their efficient representation power provided by their latent space, have shown good results for visible lesion detection. However, the commonly used reconstruction error criterion may limit their performance when facing less obvious lesions. In this work, we design two alternative detection criteria. They are derived from multivariate analysis and can more directly capture information from latent space representations. Their performance compares favorably with two additional supervised learning methods, on a difficult de novo Parkinson Disease (PD) classification task.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2302.13593; hal-03998623; https://hal.science/hal-03998623; https://hal.science/hal-03998623/document; https://hal.science/hal-03998623/file/ISBI_2023_v5_after_reviews.pdf; ARXIV: 2302.13593
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.408F9759