Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

The Habitat of the Nascent Chicxulub Crater

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Wiley Periodicals, Inc.
      AGU
    • الموضوع:
      2020
    • Collection:
      University of Michigan: Deep Blue
    • نبذة مختصرة :
      An expanded sedimentary section provides an opportunity to elucidate conditions in the nascent Chicxulub crater during the hours to millennia after the Cretaceousâ Paleogene (Kâ Pg) boundary impact. The sediments were deposited by tsunami followed by seiche waves as energy in the crater declined, culminating in a thin hemipelagic marlstone unit that contains atmospheric fallout. Seiche deposits are predominantly composed of calcite formed by decarbonation of the target limestone during impact followed by carbonation in the water column. Temperatures recorded by clumped isotopes of these carbonates are in excess of 70°C, with heat likely derived from the central impact melt pool. Yet, despite the turbidity and heat, waters within the nascent crater basin soon became a viable habitat for a remarkably diverse cross section of the food chain. The earliest seiche layers deposited with days or weeks of the impact contain earliest Danian nannoplankton and dinocyst survivors. The hemipelagic marlstone representing the subsequent years to a few millennia contains a nearly monogeneric calcareous dinoflagellate resting cyst assemblage suggesting deteriorating environmental conditions, with one interpretation involving low light levels in the impact aftermath. At the same horizon, microbial fossils indicate a thriving bacterial community and unique phosphatic fossils including appendages of pelagic crustaceans, coprolites and bacteriaâ tunneled fish bone, suggesting that this rapid recovery of the base of the food chain may have supported the survival of larger, higher trophicâ level organisms. The extraordinarily diverse fossil assemblage indicates that the crater was a unique habitat in the immediate impact aftermath, possibly as a result of heat and nutrients supplied by hydrothermal activity.Plain Language SummaryThe newly formed Chicxulub crater was rapidly filled by seawater then disturbed by tsunami and seiche waves. Sedimentary layers deposited as wave energy declined provide a unique window into the environment of ...
    • File Description:
      application/pdf
    • ISSN:
      2576-604X
    • Relation:
      Bralower, T. J.; Cosmidis, J.; Fantle, M. S.; Lowery, C. M.; Passey, B. H.; Gulick, S. P. S.; Morgan, J. V.; Vajda, V.; Whalen, M. T.; Wittmann, A.; Artemieva, N.; Farley, K.; Goderis, S.; Hajek, E.; Heaney, P. J.; Kring, D. A.; Lyons, S. L.; Rasmussen, C.; Sibert, E.; Rodríguez Tovar, F. J.; Turner‐walker, G.; Zachos, J. C.; Carte, J.; Chen, S. A.; Cockell, C.; Coolen, M.; Freeman, K. H.; Garber, J.; Gonzalez, M.; Gray, J. L.; Grice, K.; Jones, H. L.; Schaefer, B.; Smit, J.; Tikoo, S. M. (2020). "The Habitat of the Nascent Chicxulub Crater." AGU Advances 1(4): n/a-n/a.; https://hdl.handle.net/2027.42/163619; AGU Advances; Osinski, G. R., Tornabene, L. L., Banerjee, N. R., Cockell, C. S., Flemming, R., Izawa, M. R. M., McCutcheon, J., Parnell, J., Preston, L. J., Pickersgill, A. E., Pontefract, A., Sapers, H. M., & Southam, G. ( 2013 ). Impactâ generated hydrothermal systems on Earth and Mars. Icarus, 224, 347 â 363. https://doi.org/10.1016/j.icarus.2012.08.030; Miller, M. F., Franchi, I. A., Thiemens, M. H., Jackson, T. L., Brack, A., Kurat, G., & Pillinger, C. T. ( 2002 ). Massâ independent fractionation of oxygen isotopes during thermal decomposition of carbonates. Proceedings of the National Academy of Sciences, 99, 10,988 â 10,993. https://doi.org/10.1073/pnas.172378499; Morgan, J., & Gulick, S. ( 2018 ). Drilling the Kâ Pg impact crater: IODPâ ICDP Expedition 364 results. In LPI Contributions 2067. Houston, TX: Lunar and Planetary Institute.; Morgan, J. V., & Warner, M. ( 1999 ). Chicxulub: The third dimension of a multiâ ring impact basin. Geology, 27, 407 â 410. https://doi.org/10.1130/0091â 7613(1999)0272.3.co;2; Morgan, J. V., Gulick, S. P. S., Bralower, T., Chenot, E., Christeson, G., Claeys, P., Cockell, C., Collins, G. S., Coolen, M. J. L., Ferrière, L., Gebhardt, C., Goto, K., Jones, H., Kring, D. A., Le Ber, E., Lofi, J., Long, X., Lowery, C., Mellett, C., Ocampoâ Torres, R., Osinski, G. R., Perezâ Cruz, L., Pickersgill, A., Poelchau, M., Rae, A., Rasmussen, C., Rebolledoâ Vieyra, M., Riller, U., Sato, H., Schmitt, D. R., Smit, J., Tikoo, S., Tomioka, N., Urrutiaâ Fucugauchi, J., Whalen, M., Wittmann, A., Yamaguchi, K. E., & Zylberman, W. ( 2016 ). The formation of peak rings in large impact craters. Science, 354, 878 â 882. https://doi.org/10.1126/science.aah6561; Mucci, A. ( 1983 ). The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. American Journal of Science, 283, 780 â 799. https://doi.org/10.2475/ajs.283.7.780; Newsom, H. E., Hagerty, J. J., & Thorsos, I. E. ( 2001 ). Location and sampling of aqueous and hydrothermal deposits in Martian impact craters. Astrobiology, 1, 71 â 88. https://doi.org/10.1089/153110701750137459; Novellino, R., Prosser, G., Spiess, R., Viti, C., Agosta, F., Tavarnelli, E., & Bucci, F. ( 2015 ). Dynamic weakening along incipient lowâ angle normal faults in pelagic limestones (Southern Apennines, Italy). Journal of the Geological Society, 172, 283 â 286. https://doi.org/10.1144/jgs2014â 091; O’Sullivan, E. M., Goodhue, R., Ames, D. E., & Kamber, B. S. ( 2016 ). Chemostratigraphy of the Sudbury impact basin fill: Volatile metal loss and postâ impact evolution of a submarine impact basin. Geochimica et Cosmochimica Acta, 183, 198 â 233. https://doi.org/10.1016/j.gca.2016.04.007; Pesquero, M. D., Souzaâ Egipsy, V., Alcalá, L., Ascaso, C., & Fernándezâ Jalvo, Y. ( 2013 ). Calcium phosphate preservation of faecal bacterial negative moulds in hyaena coprolites. Acta Palaeontologica Polonica, 59, 997 â 1006. https://doi.org/10.4202/app.2012.0067; Petersen, S., Defliese, W. F., Saenger, C., Daëron, M., Huntington, K. W., John, C. M., Kelson, J. R., Bernasconi, S. M., Colman, A. S., Kluge, T., Olack, G. A., Schauer, A. J., Bajnai, D., Bonifacie, M., Breitenbach, S. F. M., Fiebig, J., Fernandez, A. B., Henkes, G. A., Hodell, D., Katz, A., Kele, S., Lohmann, K. C., Passey, B. H., Peral, M. Y., Petrizzo, D. A., Rosenheim, B. E., Tripati, A., Venturelli, R., Young, E. D., & Winkelstern, I. Z. ( 2019 ). Effects of improved 17 O correction on interâ laboratory agreement in clumped isotope calibrations, estimates of mineralâ specific offsets, and temperature dependence of acid digestion fractionation. Geochemistry, Geophysics, Geosystems, 20, 3495 â 3519. https://doi.org/10.1029/2018GC008127; Pineda, A., Saladié, P., Expósito, I., Rodríguezâ Hidalgo, A., Cáceres, I., Huguet, R., Rosas, A., Lópezâ Polín, L., Estalrrich, A., Garcíaâ Tabernero, A., & Vallverdú, J. ( 2017 ). Characterizing hyena coprolites from two latrines of the Iberian Peninsula during the Early Pleistocene: Gran Dolina (Sierra de Atapuerca, Burgos) and la Mina (Barranc de la Boella, Tarragona). Paleogeography, Palaeoclimatology, Palaeoecology, 480, 1 â 17. https://doi.org/10.1016/j.palaeo.2017.04.021; Plummer, L. N., & Busenberg, E. ( 1982 ). The solubilities of calcite, aragonite and vaterite in CO 2 â H 2 O solutions between 0° and 90°C, and an evaluation of the aqueous model for the system CaCO 3 â CO 2 â H 2 O. Geochimica et Cosmochimica Acta, 46, 1011 â 1040. https://doi.org/10.1016/0016â 7037(82)90056â 4; Pospichal, J. J., & Wise, S. W. Jr. ( 1990 ). Calcareous nannofossils across the K/T boundary, ODP hole 690C, Maud Rise, Weddell Sea. Proceeding of the Ocean Drilling Program, Scientific Results, 113, 515 â 532. https://doi.org/10.2973/odp.proc.sr.113.204.1990; Prinn, R. G., & Fegley, B. Jr. ( 1987 ). Bolide impacts, acid rain, and biospheric traumas at the Cretaceousâ Tertiary boundary. Earth and Planetary Science Letters, 83, 1 â 15. https://doi.org/10.1016/0012â 821x(87)90046â x; Ramírezâ Reinat, E., & Garciaâ Pichel, F. ( 2012 ). Prevalence of Ca2 + â ATPaseâ mediated carbonate dissolution among cyanobacterial euendoliths. Applied and Environmental Microbiology, 78, 7 â 13. https://doi.org/10.1128/aem.06633â 11; Rathbun, J. A., & Squyres, S. W. ( 2002 ). Hydrothermal systems associated with Martian impact craters. Icarus, 157, 362 â 372. https://doi.org/10.1006/icar.2002.6838; Rodriguezâ Navarro, C., Ruizâ Agudo, E., Luque, A., Rodriguezâ Navarro, A. B., & Ortegaâ Huertas, M. ( 2009 ). Thermal decomposition of calcite: Mechanisms of formation and textural evolution of CaO nanocrystals. American Mineralogist, 94, 578 â 593. https://doi.org/10.2138/am.2009.3021; Rodríguezâ Tovar, F. J., Lowery, C., Bralower, T. J., Gulick, S., & Jones, H. ( 2020 ). Rapid macrobenthic diversification and stabilization after the endâ Cretaceous mass extinction event. Geology. https://doi.org/10.1130/G47589.1; Rowe, A., Wilkinson, J., Coles, B., & Morgan, J. ( 2004 ). Chicxulub: Testing for postâ impact hydrothermal input into the Tertiary ocean. Journal Planetary Science Meteoritics, 39, 1223 â 1231. https://doi.org/10.1111/j.1945â 5100.2004.tb01138.x; Russell, M. J., & Hall, A. J. ( 2006 ). The onset and early evolution of life. In Memoirsâ Geological Society of America (Vol. 198, pp. 1 â 32 ). Boulder, CO: Geological Society of America. https://doi.org/10.1130/2006.1198(01); Schaefer, B., Grice, K., Coolen, M. J. L., Summons, R. E., Cui, X., Bauersachs, T., Schwark, L., Böttcher, M. E., Bralower, T. J., Lyons, S. L., Freeman, K. H., Cockell, C. S., Gulick, S. P. S., Morgan, J. V., Whalen, M. T., Lowery, C. M., & Vajda, V. ( 2020 ). Microbial life in the nascent Chicxulub crater. Geology. https://doi.org/10.1130/G46799.1; Schmitt, R. T., Wittmann, A., & Stöffler, D. ( 2004 ). Geochemistry of drill core samples from Yaxcopoilâ 1, Chicxulub impact crater, Mexico. Meteoritics & Planetary Science, 39, 979 â 1001. https://doi.org/10.1111/j.1945â 5100.2004.tb00940.x; Schoene, B., Eddy, M. P., Samperton, K. M., Keller, C. B., Keller, G., Adatte, T., & Khadri, S. F. R. ( 2019 ). Uâ Pb constraints on pulsed eruption of the Deccan Traps across the endâ Cretaceous mass extinction. Science, 363, 862 â 866. https://doi.org/10.1126/science.aau2422; Schulte, P., Deutsch, A., Salge, T., Berndt, J., Kontny, A., MacLeod, K. G., Neuser, R. D., & Krumm, S. ( 2009 ). A dualâ layer Chicxulub ejecta sequence with shocked carbonates from the Cretaceousâ Paleogene (Kâ Pg) boundary, Demerara Rise, western Atlantic. Geochimica et Cosmochimica Acta, 73, 1180 â 1204. https://doi.org/10.1016/j.gca.2008.11.011; Schulte, P., Alegret, L., Arenillas, I., Arz, J. A., Barton, P. J., Bown, P. R., Bralower, T. J., Christeson, G. L., Claeys, P., Cockell, C. S., Collins, G. S., Deutsch, A., Goldin, T. J., Goto, K., Grajalesâ Nishimura, J. M., Grieve, R. A. F., Gulick, S. P. S., Johnson, K. R., Kiessling, W., Koeberl, C., Kring, D. A., MacLeod, K. G., Matsui, T., Melosh, J., Montanari, A., Morgan, J. V., Neal, C. R., Nichols, D. J., Norris, R. D., Pierazzo, E., Ravizza, G., Rebolledoâ Vieyra, M., Reimold, W. U., Robin, E., Salge, T., Speijer, R. P., Sweet, A. R., Urrutiaâ Fucugauchi, J., Vajda, V., Whalen, M. T., & Willumsen, P. S. ( 2010 ). The Chicxulub asteroid impact and mass extinction at the Cretaceousâ Paleogene boundary. Science, 327, 1214 â 1218. https://doi.org/10.1126/science.1177265; Seidel, R., Lyons, K., Blumer, M., Zaslansky, P., Fratzl, P., Weaver, J. C., & Dean, M. N. ( 2016 ). Ultrastructural and developmental features of the tessellated endoskeleton of elasmobranchs (sharks and rays). Journal of Anatomy, 229, 681 â 702. https://doi.org/10.1111/joa.12508; Shenton, B. J., Grossman, E. L., Passey, B. H., Henkes, G. A., Becker, T. P., Laya, J. C., Perezâ Huerta, A., Becker, S. P., & Lawson, M. ( 2015 ). Clumped isotope thermometry in deeply buried sedimentary carbonates: The effects of bond reordering and recrystallization. GSA Bulletin, 127, 1036 â 1051. https://doi.org/10.1130/b31169.1; Sibert, E. C., Hull, P. M., & Norris, R. D. ( 2014 ). Resilience of Pacific pelagic fish across the Cretaceous/Palaeogene mass extinction. Nature Geoscience, 7, 667. https://doi.org/10.1038/ngeo2227; Sibert, E. C., & Norris, R. D. ( 2015 ). New age of fishes initiated by the Cretaceousâ Paleogene mass extinction. Proceedings of the National Academy of Sciences, 112, 8537 â 8542. https://doi.org/10.1073/pnas.1504985112; Smit, J., & Romein, A. ( 1985 ). A sequence of events across the Cretaceousâ Tertiary boundary. Earth and Planetary Science Letters, 74, 155 â 170. https://doi.org/10.1016/0012â 821x(85)90019â 6; Sprain, C. J., Renne, P. R., Vanderkluysen, L., Pande, K., Self, S., & Mittal, T. ( 2019 ). The eruptive tempo of Deccan volcanism in relation to the Cretaceousâ Paleogene boundary. Science, 363, 866 â 870. https://doi.org/10.1126/science.aav1446; Stokes, G. G. ( 1850 ). On the effect of the internal friction of fluids on the motion of pendulums. Transactions of the Cambridge Philosophical Society IX, reprinted in Mathematical and Physical Papers, 3, 1 â 86. https://doi.org/10.1017/CBO9780511702266; Tabor, C. R., Bardeen, C. G., Ottoâ Bliesner, B. L., Garcia, R. R., & Toon, O. B. ( 2020 ). Causes and climatic consequences of the impact winter at the Cretaceousâ Paleogene boundary. Geophysical Research Letters, 47, e60121. https://doi.org/10.1029/2019GL085572; Thompson, J. B. ( 2000 ). Microbial sediments (pp. 250 â 260 ). Berlin, Heidelberg: Springer.; Toon, O. B., Pollack, J. B., Ackerman, T. P., Turco, R. P., McKay, C. P., & Liu, M. S. ( 1982 ). Evolution of an impactâ generated dust cloud and its effects on the atmosphere. In Geological Society of America Special Papers (pp. 187 â 200 ). Boulder, CO: Geological Society of America.; Tschudy, R., Pillmore, C., Orth, C., Gilmore, J., & Knight, J. ( 1984 ). Disruption of the terrestrial plant ecosystem at the Cretaceousâ Tertiary boundary, Western Interior. Science, 225, 1030 â 1032. https://doi.org/10.1126/science.225.4666.1030; Tuchscherer, M. G. ( 2008 ). The petrology and geochemistry of the impactite sequence and selected target rocks from the Yaxcopoilâ 1 borehole. Yucatan Peninsula, Mexico: Chicxulub Impact Structure.; Vellekoop, J., Sluijs, A., Smit, J., Schouten, S., Weijers, J. W. H., Damste, J. S. S., & Brinkhuis, H. ( 2014 ). Rapid shortâ term cooling following the Chicxulub impact at the Cretaceousâ Paleogene boundary. Proceedings of the National Academy of Sciences of the United States of America, 111, 7537 â 7541. https://doi.org/10.1073/pnas.1319253111; Vellekoop, J., Woelders, L., van Helmond, N. A. G. M., Galeotti, S., Smit, J., Slomp, C. P., Brinkhuis, H., Claeys, P., & Speijer, R. P. ( 2018 ). Shelf hypoxia in response to global warming after the Cretaceousâ Paleogene boundary impact. Geology, 46, 683 â 686. https://doi.org/10.1130/g45000.1; Wang, Y.â Y., Yao, Q.â Z., Zhou, G.â T., & Fu, S.â Q. ( 2013 ). Formation of elongated calcite mesocrystals and implication for biomineralization. Chemical Geology, 360, 126 â 133. https://doi.org/10.1016/j.chemgeo.2013.10.013; Wasserburg, G., Papanastassiou, D., & Sanz, H. ( 1969 ). Initial strontium for a chondrite and the determination of a metamorphism or formation interval. Earth and Planetary Science Letters, 7, 33 â 43. https://doi.org/10.1016/0012â 821x(69)90008â 9; Whalen, M. T., Gulick, S., Pearson, Z. F., & Norris, R. D. ( 2013 ). Annealing the Chicxulub impact: Paleogene Yucatán carbonate slope development in the Chicxulub impact basin, Mexico. In Special Publicationâ SEPM (Vol. 105, pp. 282 â 304 ). Tulsa, OK: Society for Sedimentary Geology.; Whalen, M. T., Gulick, S. P. S., Lowery, C., Bralower, T. J., Morgan, J. V., Grice, K., Schaefer, B., Coolen, M., Vajada, V., Smit, J., & the IODPâ ICDP Expedition Science Party ( 2018 ). Winding down the Chicxulub impact: The transition between impactites and normal marine sedimentation. In American Geophysical Union Fall Meeting Abstracts, PP53Bâ 08.; Wolbach, W. S., Gilmour, I., & Anders, E. ( 1990 ). Major wildfires at the Cretaceous/Tertiary boundary. In Geological society of America Special Paper (Vol. 247, pp. 391 â 400 ). Boulder, CO: Geological Society of America.; Xiao, S., & Schiffbauer, J. D. ( 2009 ). From fossils to astrobiology (pp. 89 â 117 ). Dordrecht: Springer.; Yancey, T. E., & Guillemette, R. N. ( 2008 ). Carbonate accretionary lapilli in distal deposits of the Chicxulub impact event. Geological Society of America Bulletin, 120, 1105 â 1118. https://doi.org/10.1130/b26146.1; Zachos, J. C., Arthur, M. A., & Dean, W. E. ( 1989 ). Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary. Nature, 337, 61. https://doi.org/10.1038/337061a0; ZatoÅ , M., Niedźwiedzki, G., Marynowski, L., Benzerara, K., Pott, C., Cosmidis, J., Krzykawski, T., & Filipiak, P. ( 2015 ). Coprolites of Late Triassic carnivorous vertebrates from Poland: An integrative approach. Paleogeography, Palaeoclimatology, Palaeoecology, 430, 21 â 46. https://doi.org/10.1016/j.palaeo.2015.04.009; Zürcher, L., & Kring, D. A. ( 2004 ). Hydrothermal alteration in the core of the Yaxcopoilâ 1 borehole, Chicxulub impact structure, Mexico. Meteoritics and Planetary Science, 39, 1199 â 1221. https://doi.org/10.1111/j.1945â 5100.2004.tb01137.x; Luz, B., & Barkan, E. ( 2010 ). Variations of 17 O/ 16 O and 18 O/ 16 O in meteoric waters. Geochimica et Cosmochimica Acta, 74, 6276 â 6286. https://doi.org/10.1016/j.gca.2010.08.016; Passey, B. H., Hu, H., Ji, H., Montanari, S., Li, S., Henkes, G. A., & Levin, N. E. ( 2014 ). Triple oxygen isotopes in biogenic and sedimentary carbonates. Geochimica et Cosmochimica Acta, 141, 1 â 25. https://doi.org/10.1016/j.gca.2014.06.006; Abramov, O., & Kring, D. A. ( 2007 ). Numerical modeling of impactâ induced hydrothermal activity at the Chicxulub crater. Meteoritics and Planetary Science, 42, 93 â 112. https://doi.org/10.1111/j.1945â 5100.2007.tb00220.x; Agrinier, P., Deutsch, A., Schärer, U., & Martinez, I. ( 2001 ). Fast backâ reactions of shockâ released CO 2 from carbonates: An experimental approach. Geochimica et Cosmochimica Acta, 65, 2615 â 2632. https://doi.org/10.1016/s0016â 7037(01)00617â 2; Akahane, H., Furuno, T., Miyajima, H., Yoshikawa, T., & Yamamoto, S. ( 2004 ). Rapid wood silicification in hot spring water: An explanation of silicification of wood during the Earth’s history. Sedimentary Geology, 169, 219 â 228. https://doi.org/10.1016/j.sedgeo.2004.06.003; Alâ Bassam, K., & Halodová, P. ( 2018 ). Fossil bacteria in Cenomanianâ Turonian phosphate nodules and coprolites, Bohemian Cretaceous Basin, Czech Republic. Annales societatis geologorum poloniae (Vol. 88, pp. 257 â 272 ). Kraków, Poland. https://doi.org/10.14241/asgp.2018.009; Alegret, L., & Thomas, E. ( 2001 ). Upper Cretaceous and lower Paleogene benthic foraminifera from northeastern Mexico. Micropaleontology, 47, 269 â 316. https://doi.org/10.2113/47.4.269; Alfaro, M. E., Faircloth, B. C., Harrington, R. C., Sorenson, L., Friedman, M., Thacker, C. E., Oliveros, C. H., Ä erný, D., & Near, T. J. ( 2018 ). Explosive diversification of marine fishes at the Cretaceousâ Palaeogene boundary. Nature Ecology & Evolution, 2, 688. https://doi.org/10.1038/s41559â 018â 0494â 6; Alvarez, L. W., Alvarez, W., Asaro, F., & Michel, H. V. ( 1980 ). Extraterrestrial cause for the Cretaceousâ Tertiary extinction. Science, 208, 1095 â 1108. https://doi.org/10.1126/science.208.4448.1095; Artemieva, N., & Morgan, J. ( 2009 ). Modeling the formation of the Kâ Pg boundary layer. Icarus, 201, 768 â 780. https://doi.org/10.1016/j.icarus.2009.01.021; Artemieva, N., & Morgan, J. ( 2017 ). Quantifying the release of climateâ active gases by large meteorite impacts with a case study of Chicxulub. Geophysical Research Letters, 44, 11,0180 â 11,0188. https://doi.org/10.1002/2017GL074879; Artemieva, N., & Morgan, J. ( 2020 ). Global Kâ Pg layer deposited from a dust cloud. Geophysical Research Letters, 47, e2019GL086562. https://doi.org/10.1029/2019GL086562; Arz, J. A., Alegret, L., & Arenillas, I. ( 2004 ). Foraminiferal biostratigraphy and paleoenvironmental reconstruction at the Yaxcopoilâ 1 drill hole, Chicxulub crater, Yucatán Peninsula. Meteoritics & Planetary Science, 39, 1099 â 1111. https://doi.org/10.1111/j.1945â 5100.2004.tb01131.x; Astrop, T. I., Sahni, V., Blackledge, T. A., & Stark, A. Y. ( 2015 ). Mechanical properties of the chitinâ calciumâ phosphate â clam shrimpâ carapace (Branchiopoda: Spinicaudata): Implications for taphonomy and fossilization. Journal of Crustacean Biology, 35, 123 â 131. https://doi.org/10.1163/1937240xâ 00002332; Atkins, A., Dean, M. N., Habegger, M. L., Motta, P. J., Ofer, L., Repp, F., Shipov, A., Weiner, S., Currey, J. D., & Shahar, R. ( 2014 ). Remodeling in bone without osteocytes: Billfish challenge bone structureâ function paradigms. Proceedings of the National Academy of Sciences, 111, 16,047 â 16,052. https://doi.org/10.1073/pnas.1412372111; Beck, W. C., Grossman, E. L., & Morse, J. W. ( 2005 ). Experimental studies of oxygen isotope fractionation in the carbonic acid system at 15°, 25°, and 40°C. Geochimica et Cosmochimica Acta, 69, 3493 â 3503. https://doi.org/10.1016/j.gca.2005.02.003; Belza, J., Goderis, S., Keppens, E., Vanhaecke, F., & Claeys, P. ( 2012 ). An emplacement mechanism for the megaâ block zone within the Chicxulub crater, (Yucatán, Mexico) based on chemostratigraphy. Meteoritics & Planetary Science, 47, 400 â 413. https://doi.org/10.1111/j.1945â 5100.2012.01345.x; Berggren, W. A., Kent, D. V., Swisher, C. C. III, & Aubry, M.â P. ( 1995 ). A revised Cenozoic geochronology and chronostratigraphy. In Geochronology, Time Scales and Global Stratigraphic Correlation, SEPM Special Publication No. 54 (pp. 129 â 212 ). Tulsa, OK.; Birch, H. S., Coxall, H. K., & Pearson, P. N. ( 2012 ). Evolutionary ecology of Early Paleocene planktonic foraminifera: Size, depth habitat and symbiosis. Paleobiology, 38, 374 â 390. https://doi.org/10.1666/11027.1; Bralower, T. J., Cosmidis, J., Heaney, P., Kump, L. R., Morgan, J., Harper, D., Lyons, S. L., Freeman, K. H., Grice, K., Wendler, J., Zachos, J. C., Artemieva, N., Gulick, S., House, C., Jones, H. L., Lowery, C. L., Nims, C., Schaefer, B., Si, A., Thomas, E., & Vajda, V. ( 2020 ). Origin of a global carbonate layer deposited in the aftermath of the Cretaceousâ Paleogene boundary impact. Earth and Planetary Science Letters, 548, 116476. https://doi.org/10.1016/j.epsl.2020.116476; Brenner, D. C., Passey, B. H., & Stolper, D. A. ( 2018 ). Influence of water on clumpedâ isotope bond reordering kinetics in calcite. Geochimica et Cosmochimica Acta, 224, 42 â 63. https://doi.org/10.1016/j.gca.2017.12.026; Brinkhuis, H., Bujak, J., Smit, J., Versteegh, G., & Visscher, H. ( 1998 ). Dinoflagellateâ based sea surface temperature reconstructions across the Cretaceousâ Tertiary boundary. Paleogeography, Palaeoclimatology, Palaeoecology, 141, 67 â 83. https://doi.org/10.1016/s0031â 0182(98)00004â 2; Brinkhuis, H., & Zachariasse, W. J. ( 1988 ). Dinoflagellate cysts, sea level changes and planktonic foraminifers across the Cretaceousâ Tertiary boundary at El Haria, northwest Tunisia. Marine Micropaleontology, 13, 153 â 191. https://doi.org/10.1016/0377â 8398(88)90002â 3; Brugger, J., Feulner, G., & Petri, S. ( 2017 ). Baby, it’s cold outside: Climate model simulations of the effects of the asteroid impact at the end of the Cretaceous. Geophysical Research Letters, 44, 419 â 427. https://doi.org/10.1002/2016GL072241; Bucher, K., & Stober, I. ( 2010 ). Fluids in the upper continental crust. Geofluids, 10, 241 â 253. https://doi.org/10.1002/9781444394900.ch17; Chandran, R., Williams, L., Hung, A., Nowlin, K., & LaJeunesse, D. ( 2016 ). SEM characterization of anatomical variation in chitin organization in insect and arthropod cuticles. Micron, 82, 74 â 85. https://doi.org/10.1016/j.micron.2015.12.010; Charlier, B., Tissot, F., Dauphas, N., & Wilson, C. ( 2019 ). Nucleosynthetic, radiogenic and stable strontium isotopic variations in fineâ and coarseâ grained refractory inclusions from Allende. Geochimica et Cosmochimica Acta, 265, 413 â 430. https://doi.org/10.1016/j.gca.2019.09.005; Chiarenza, A. A., Farnsworth, A., Mannion, P. D., Lunt, D. J., Valdez, P. J., Morgan, J. V., & Allison, P. A. ( 2020 ). Asteroid impact, not volcanism, caused the endâ Cretaceous dinosaur extinction. Proceedings of the National Academy of Sciences of the United States of America, 117. https://doi.org/10.1073/pnas.2006087117; Cockell, C. S., Coolen, M. J., Grice, K., & Schaefer, B. ( 2019 ). 316â 3. Microbial communities and impact enhanced habitats in the Chicxulub impact crater. In Astrobiology science conference. Washington, DC: AGU.; Cockell, C. S., Osinski, G. R., & Lee, P. ( 2003 ). The impact crater as a habitat: Effects of impact processing of target materials. Astrobiology, 3, 181 â 191. https://doi.org/10.1089/153110703321632507; Cohen, L., Dean, M., Shipov, A., Atkins, A., Monsonegoâ Ornan, E., & Shahar, R. ( 2012 ). Comparison of structural, architectural and mechanical aspects of cellular and acellular bone in two teleost fish. Journal of Experimental Biology, 215, 1983 â 1993. https://doi.org/10.1242/jeb.064790; Collettini, C., Viti, C., Tesei, T., & Mollo, S. ( 2013 ). Thermal decomposition along natural carbonate faults during earthquakes. Geology, 41, 927 â 930. https://doi.org/10.1130/g34421.1; Colodner, D. C., Boyle, E. A., Edmond, J. M., & Thomson, J. ( 1992 ). Postâ depositional mobility of platinum, iridium and rhenium in marine sediments. Nature, 358, 402. https://doi.org/10.1038/358402a0; Cosmidis, J., Benzerara, K., Gheerbrant, E., Estève, I., Bouya, B., & Amaghzaz, M. ( 2013 ). Nanometerâ scale characterization of exceptionally preserved bacterial fossils in Paleocene phosphorites from Ouled A bdoun (Morocco). Geobiology, 11, 139 â 153. https://doi.org/10.1111/gbi.12022; Cosmidis, J., Benzerara, K., Menguy, N., & Arning, E. ( 2013 ). Microscopy evidence of bacterial microfossils in phosphorite crusts of the Peruvian shelf: Implications for phosphogenesis mechanisms. Chemical Geology, 359, 10 â 22. https://doi.org/10.1016/j.chemgeo.2013.09.009; Covey, C., Thompson, S. L., Weissman, P. R., & MacCracken, M. C. ( 1994 ). Global climatic effects of atmospheric dust from an asteroid or comet impact on Earth. Global and Planetary Change, 9, 263 â 273. https://doi.org/10.1016/0921â 8181(94)90020â 5; Coxall, H. K., D’Hondt, S., & Zachos, J. C. ( 2006 ). Pelagic evolution and environmental recovery after the Cretaceousâ Paleogene mass extinction. Geology, 34. https://doi.org/10.1130/g21702.1; Crosby, C. H., & Bailey, J. ( 2012 ). The role of microbes in the formation of modern and ancient phosphatic mineral deposits. Frontiers in Microbiology, 3, 241. https://doi.org/10.3389/fmicb.2012.00241; DePalma, R. A., Smit, J., Burnham, D. A., Kuiper, K., Manning, P. L., Oleinik, A., Larson, P., Maurrasse, F. J., Vellekoop, J., Richards, M. A., Gurche, L., & Alvarez, W. ( 2019 ). A seismically induced onshore surge deposit at the KPg boundary, North Dakota. Proceedings of the National Academy of Sciences, 116, 8190 â 8199. https://doi.org/10.1073/pnas.1817407116; Dickin, A. P. ( 2018 ). Radiogenic isotope geology. Cambridge, UK: Cambridge University Press.; Durandâ Manterola, H. J. & Corderoâ Tercero, G. Assessments of the energy, mass and size of the Chicxulub impactor. arXiv preprint arXiv:1403.6391 ( 2014 ).; Eiler, J. M. ( 2007 ). Clumpedâ isotope geochemistryâ The study of naturallyâ occurring, multiplyâ substituted isotopologues. Earth and Planetary Science Letters, 262, 309 â 327. https://doi.org/10.1016/j.epsl.2007.08.020; Emanuel, K. A., Speer, K., Rotunno, R., Srivastava, R., & Molina, M. ( 1995 ). Hypercanes: A possible link in global extinction scenarios. Journal of Geophysical Research, 100, 13,755 â 13,765. https://doi.org/10.1029/95JD01368; Emslie, S. D., Brasso, R., Patterson, W. P., Valera, A. C., McKenzie, A., Silva, A. M., Gleason, J. D., & Blum, J. D. ( 2015 ). Chronic mercury exposure in Late Neolithic/Chalcolithic populations in Portugal from the cultural use of cinnabar. Scientific Reports, 5, 14679. https://doi.org/10.1038/srep14679; Farley, K., & Eltgroth, S. ( 2003 ). An alternative age model for the Paleoceneâ Eocene thermal maximum using extraterrestrial 3 He. Earth and Planetary Science Letters, 208, 135 â 148. https://doi.org/10.1016/s0012â 821x(03)00017â 7; Faure, G., & Powell, J. L. ( 1972 ). Strontium isotope geology (pp. 78 â 91 ). Berlin, Heidelberg, New York: Springer.; Ferry, J. M., Passey, B. H., Vasconcelos, C., & Eiler, J. M. ( 2011 ). Formation of dolomite at 40â 80 ° C in the Latemar carbonate buildup, Dolomites, Italy, from clumped isotope thermometry. Geology, 39, 571 â 574. https://doi.org/10.1130/g31845.1; Forchhammer, G. ( 1825 ). Om de geognostiske forhold i en deel af Sjelland og naboøerne.; Friedman, M. ( 2009 ). Ecomorphological selectivity among marine teleost fishes during the endâ Cretaceous extinction. Proceedings of the National Academy of Sciences, 106, 5218 â 5223. https://doi.org/10.1073/pnas.0808468106; Gabitov, R. I., Watson, E. B., & Sadekov, A. ( 2012 ). Oxygen isotope fractionation between calcite and fluid as a function of growth rate and temperature: An in situ study. Chemical Geology, 306, 92 â 102. https://doi.org/10.1016/j.chemgeo.2012.02.021; Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E. A., Schrag, D., & Eiler, J. M. ( 2006 ). 13Câ 18O bonds in carbonate minerals: A new kind of paleothermometer. Geochimica et Cosmochimica Acta, 70, 1439 â 1456. https://doi.org/10.1016/j.gca.2005.11.014; Goderis, S., Sato, H., Ferrière, L., Schmitz, B., Burney, D., Bralower, T. J., de Graaff, S. J., Déhais, T., de Winter, N. J., Elfman, M., Feignon, J.â G., Gulick, S. P. S., Ishikawa, A., Kaskes, P., Koeberl, C., Kristiansson, P., Lowery, C. M., Morgan, J., Neal, C. R., Owens, J. D., Schulz, T., Sinnesael, M., Smit, J., Vellekoop, J., Whalen, M. T., Wittmann, A., Vanhaecke, F., Van Malderen, S., & Claeys, P. ( 2019 ). The final settling of meteoritic matter on the peakâ ring of the Chicxulub impact structure ar Site M0077A of IODPâ ICDP expedition 364. In Large meteorite impacts and planetary evolution VI, Abstract #5068. Houston, TX: Lunar and Planetary Institute.; Goto, K., Tada, R., Tajika, E., Bralower, T. J., Hasegawa, T., & Matsui, T. ( 2004 ). Evidence for ocean water invasion into the Chicxulub crater at the Cretaceous/Tertiary boundary. Meteoritics & Planetary Science, 39, 1233 â 1247. https://doi.org/10.1111/j.1945â 5100.2004.tb01139.x; Gulick, S. P., Barton, P. J., Christeson, G. L., Morgan, J. V., McDonald, M., Mendozaâ Cervantes, K., Pearson, Z. F., Surendra, A., Urrutiaâ Fucugauchi, J., Vermeesch, P. M., & Warner, M. R. ( 2008 ). Importance of preâ impact crustal structure for the asymmetry of the Chicxulub impact crater. Nature Geoscience, 1, 131 â 135. https://doi.org/10.1038/ngeo103; Gulick, S., Morgan, J., Mellett, C. L., & the Expedition 364 Scientists ( 2017 ). Expedition 364 preliminary report: Chicxulub: Drilling the Kâ Pg impact crater. College Station, TX: International Ocean Drilling Program.; Gulick, S., Bralower, T. J., Ormö, J., Hall, B., Grice, K., Schaefer, B., Lyons, S., Freeman, K., Morgan, J., Artemieva, N., Kaskes, P., de Graaff, S., Whalen, M., Goto, K., Smit, J., & the Expedition 364 Scientists ( 2019 ). The first day of the Cenozoic. PNAS, 113, 19,342 â 19,351. https://doi.org/10.1073/pnas.1909479116; Gulick, S., Christeson, G. L., Barton, P. J., Grieve, R. A. F., Morgan, J. V., & Urrutiaâ Fucugauchi, J. ( 2013 ). Geophysical characterization of the Chicxulub impact crater. Reviews of Geophysics, 51, 31 â 52. https://doi.org/10.1002/rog.20007; Hamann, C., Bläsing, S., Hecht, L., Schäffer, S., Deutsch, A., Osterholz, J., & Lexow, B. ( 2018 ). The reaction of carbonates in contact with laserâ generated, superheated silicate melts: Constraining impact metamorphism of carbonateâ bearing target rocks. Meteoritics & Planetary Science, 53, 1644 â 1686. https://doi.org/10.1111/maps.13133; He, S., & Morse, J. W. ( 1993 ). The carbonic acid system and calcite solubility in aqueous Naâ Kâ Caâ Mgâ Clâ SO4 solutions from 0° to 90°C. Geochimica et Cosmochimica Acta, 57, 3533 â 3554. https://doi.org/10.1016/0016â 7037(93)90137â l; Hecht, L., Wittmann, A., Schmitt, R.â T., & Stöffler, D. ( 2004 ). Composition of impact melt particles and the effects of postâ impact alteration in suevitic rocks at the Yaxcopoilâ 1 drill core, Chicxulub crater, Mexico. Meteoritics and Planetary Science, 39, 1169 â 1186. https://doi.org/10.1111/j.1945â 5100.2004.tb01135.x; Henkes, G. A., Passey, B. H., Grossman, E. L., Shenton, B. J., Pérezâ Huerta, A., & Yancey, T. E. ( 2014 ). Temperature limits for preservation of primary calcite clumped isotope paleotemperatures. Geochimica et Cosmochimica Acta, 139, 362 â 382. https://doi.org/10.1016/j.gca.2014.04.040; Hiatt, E. E., Pufahl, P. K., & Edwards, C. T. ( 2015 ). Sedimentary phosphate and associated fossil bacteria in a Paleoproterozoic tidal flat in the 1.85 Ga Michigamme Formation, Michigan, USA. Sedimentary Geology, 319, 24 â 39. https://doi.org/10.1016/j.sedgeo.2015.01.006; Hildebrand, A. R., Penfield, G. T., Kring, D. A., Pilkington, M., Antonio Camargo, Z., Jacobsen, S. B., & Boynton, W. V. ( 1991 ). Chicxulub crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology, 19, 867 â 871. https://doi.org/10.1130/0091â 7613(1991)0192.3.co;2; Hollund, H. I., Blank, M., & Sjögren, K.â G. ( 2018 ). Dead and buried? Variation in postâ mortem histories revealed through histotaphonomic characterisation of human bone from megalithic graves in Sweden. PLoS ONE, 13, e0204662. https://doi.org/10.1371/journal.pone.0204662; Horton, J. M., & Summers, A. P. ( 2009 ). The material properties of acellular bone in a teleost fish. Journal of Experimental Biology, 212, 1413 â 1420. https://doi.org/10.1242/jeb.020636; Hull, P. M., Bornemann, A., Penman, D. E., Henehan, M. J., Norris, R. D., Wilson, P. A., Blum, P., Alegret, L., Batenburg, S. J., Bown, P. R., Bralower, T. J., Cournede, C., Deutsch, A., Donner, B., Friedrich, O., Jehle, S., Kim, H., Kroon, D., Lippert, P. C., Loroch, D., Moebius, I., Moriya, K., Peppe, D. J., Ravizza, G. E., Röhl, U., Schueth, J. D., Sepúlveda, J., Sexton, P. F., Sibert, E. C., Å liwiÅ ska, K. K., Summons, R. E., Thomas, E., Westerhold, T., Whiteside, J. H., Yamaguchi, T., & Zachos, J. C. ( 2020 ). On impact and volcanism across the Cretaceousâ Paleogene boundary. Science, 367, 266 â 272. https://doi.org/10.1126/science.aay5055; Hull, P. M., Norris, R. D., Bralower, T. J., & Schueth, J. D. ( 2011 ). A role for chance in marine recovery from the endâ Cretaceous extinction. Nature Geoscience, 4, 856 â 860. https://doi.org/10.1038/ngeo1302; Jiang, S., Bralower, T. J., Patzkowsky, M. E., Kump, L. R., & Schueth, J. D. ( 2010 ). Geographic controls on nannoplankton extinction across the Cretaceous/Palaeogene boundary. Nature Geoscience, 3, 280 â 285. https://doi.org/10.1038/ngeo775; Jones, B. ( 2017 ). Review of aragonite and calcite crystal morphogenesis in thermal spring systems. Sedimentary Geology, 354, 9 â 23. https://doi.org/10.1016/j.sedgeo.2017.03.012; Jones, H. L., Lowery, C. M., & Bralower, T. J. ( 2019 ). Calcareous nannoplankton â boomâ bustâ successions in the Cretaceousâ Paleogene (Kâ Pg) impact crater suggests ecological experimentation at â ground zeroâ . Geology, 47, 753 â 756. https://doi.org/10.1130/g46143.1; Jones, T. P., & Lim, B. ( 2000 ). Extraterrestrial impacts and wildfires. Paleogeography, Palaeoclimatology, Palaeoecology, 164, 57 â 66. https://doi.org/10.1016/s0031â 0182(00)00175â 9; Kaiho, K., Oshima, N., Adachi, K., Adachi, Y., Mizukami, T., Fujibayashi, M., & Saito, R. ( 2016 ). Global climate change driven by soot at the Kâ Pg boundary as the cause of the mass extinction. Scientific Reports, 6, 28427. https://doi.org/10.1038/srep28427; Kim, S.â T., & O’Neil, J. R. ( 1997 ). Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta, 61, 3461 â 3475. https://doi.org/10.1016/s0016â 7037(97)00169â 5; Kring, D. ( 2007 ). A. The Chicxulub impact event and its environmental consequences at the Cretaceousâ Tertiary boundary. Paleogeography, Palaeoclimatology Palaeoecology, 255, 4 â 21. https://doi.org/10.1016/j.palaeo.2007.02.037; Kring, D. A. ( 1995 ). The dimensions of the Chicxulub impact crater and impact melt sheet. Journal of Geophysical Research: Planets, 100, 16,979 â 16,986. https://doi.org/10.1029/95JE01768; Kring, D. A. ( 2005 ). Hypervelocity collisions into continental crust composed of sediments and an underlying crystalline basement: Comparing the Ries (â ¼24 km) and Chicxulub (â ¼180 km) impact craters. Chemie der Erdeâ Geochemistry, 65, 1 â 46. https://doi.org/10.1016/j.chemer.2004.10.003; Kring, D. A., & Boynton, W. V. ( 1992 ). Petrogenesis of an augiteâ bearing melt rock in the Chicxulub structure and its relationship to K/T impact spherules in Haiti. Nature, 358, 141. https://doi.org/10.1038/358141a0; Kring, D. A., Tikoo, S. M., Schmieder, M., Riller, U., Rebolledoâ Vieyra, M., Simpson, S. L., Osinski, G. R., Gattacceca, J., Wittmann, A., Verhagen, C. M., Cockell, C. S., Coolen, M. J. L., Longstaffe, F. J., Gulick, S. P. S., Morgan, J. V., Bralower, T. J., Chenot, E., Christeson, G. L., Claeys, P., Ferrière, L., Gebhardt, C., Goto, K., Green, S. L., Jones, H., Lofi, J., Lowery, C. M., Ocampoâ Torres, R., Perezâ Cruz, L., Pickersgill, A. E., Poelchau, M. H., Rae, A. S. P., Rasmussen, C., Sato, H., Smit, J., Tomioka, N., Urrutiaâ Fucugauchi, J., Whalen, M. T., Xiao, L., & Yamaguchi, K. E. ( 2020 ). Probing the hydrothermal system of the Chicxulub Crater. Science Advances, 6. https://doi.org/10.1126/sciadv.aaz3053; Kruge, M. A., Stankiewicz, B. A., Crelling, J. C., Montanari, A., & Bensley, D. F. ( 1994 ). Fossil charcoal in Cretaceousâ Tertiary boundary strata: Evidence for catastrophic firestorm and megawave. Geochimica et Cosmochimica Acta, 58, 1393 â 1397. https://doi.org/10.1016/0016â 7037(94)90394â 8; Lammers, L. N., & Mitnick, E. H. ( 2019 ). Magnesian calcite solid solution thermodynamics inferred from authigenic deepâ sea carbonate. Geochimica et Cosmochimica Acta, 248, 343 â 355. https://doi.org/10.1016/j.gca.2019.01.006; Lowery, C. M., Bralower, T. J., Owens, J. D., Rodríguezâ Tovar, F. J., Jones, H., Smit, J., Whalen, M. T., Claeys, P., Farley, K., Gulick, S. P. S., Morgan, J. V., Green, S., Chenot, E., Christeson, G. L., Cockell, C. S., Coolen, M. J. L., Ferrière, L., Gebhardt, C., Goto, K., Kring, D. A., Lofi, J., Ocampoâ Torres, R., Perezâ Cruz, L., Pickersgill, A. E., Poelchau, M. H., Rae, A. S. P., Rasmussen, C., Rebolledoâ Vieyra, M., Riller, U., Sato, H., Tikoo, S. M., Tomioka, N., Urrutiaâ Fucugauchi, J., Vellekoop, J., Wittmann, A., Xiao, L., Yamaguchi, K. E., & Zylberman, W. ( 2018 ). Rapid recovery of life at ground zero of the endâ Cretaceous mass extinction. Nature, 558, 288 â 291. https://doi.org/10.1038/s41586â 018â 0163â 6; Lüders, V., & Rickers, K. ( 2004 ). Fluid inclusion evidence for impactâ related hydrothermal fluid and hydrocarbon migration in Creataceous sediments of the ICDPâ Chicxulub drill core Yaxâ 1. Meteoritics and Planetary Science, 39, 1187 â 1197. https://doi.org/10.1111/j.1945â 5100.2004.tb01136.x; Lyons, S. L., Karp, A. T., Bralower, T. J., Grice, K., Schaefer, B., Gulick, S. P. S., Morgan, J., & Freeman, K. H. ( 2020 ). Organic matter from the Chicxulub crater exacerbated the Kâ Pg impact winter. PNAS. https://doi.org/10.1073/pnas.2004596117; MacLeod, K. G., Huber, B. T., & Fullagar, P. D. ( 2001 ). Evidence for a small (â ¼0.000030) but resolvable increase in seawater 87 Sr/ 86 Sr ratios across the Cretaceousâ Tertiary boundary. Geology, 29, 303 â 306. https://doi.org/10.1130/0091â 7613(2001)0292.0.co;2; Maggi, F. ( 2013 ). The settling velocity of mineral, biomineral, and biological particles and aggregates in water. Journal of Geophysical Research: Oceans, 118, 2118 â 2132. https://doi.org/10.1002/jgrc.20086; Martin, E., & Macdougall, J. ( 1991 ). Seawater Sr isotopes at the Cretaceous/Tertiary boundary. Earth and Planetary Science Letters, 104, 166 â 180. https://doi.org/10.1016/0012â 821x(91)90202â s; McArthur, J. & Howarth, R. ( 2004 ). Cambridge University Press: Cambridge, UK.; Melosh, H. J., Schneider, N., Zahnle, K. J., & Latham, D. ( 1990 ). Ignition of global wildfires at the Cretaceous/Tertiary boundary. Nature, 343, 251. https://doi.org/10.1038/343251a0
    • الرقم المعرف:
      10.1029/2020AV000208
    • Rights:
      IndexNoFollow
    • الرقم المعرف:
      edsbas.40363EB0