Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

GPR-inferred fracture aperture widening in response to a high-pressure tracer injection test at the Äspö Hard Rock Laboratory, Sweden

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Géosciences Rennes (GR); Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR); Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS); Itasca Consultants; Institute of Earth Sciences Lausanne; Université de Lausanne = University of Lausanne (UNIL); Swedish Nuclear Fuel and Waste Management Company; French National Observatory H+; European Project: 857989,PANORAMA ITN
    • بيانات النشر:
      HAL CCSD
      Elsevier
    • الموضوع:
      2021
    • Collection:
      Archive Ouverte de l'Université Rennes (HAL)
    • نبذة مختصرة :
      International audience ; We assess the performance of the Ground Penetrating Radar (GPR) method in fractured rock formations of very low transmissivity (e.g. T ≈ 10−9–10−10 m2/s for sub-mm apertures) and, more specifically, to image fracture widening induced by high-pressure injections. A field-scale experiment was conducted at the Äspö Hard Rock Laboratory (Sweden) in a tunnel situated at 410 m depth. The tracer test was performed within the most transmissive sections of two boreholes separated by 4.2 m. The electrically resistive tracer solution composed of deionized water and Uranine was expected to lead to decreasing GPR reflections with respect to the saline in situ formation water. The injection pressure was 5000 kPa leading to an injection rate of 8.6 mL/min (at steady state) that was maintained during 25 h, which resulted in a total injected volume of 13 L. To evaluate the fracture pathways between the boreholes, we conducted 3-D surface-based GPR surveys before and at the end of the tracer tests, using 160 MHz and 450 MHz antennas. Difference GPR data between the two acquisitions highlight an increasing fracture reflectivity in-between the boreholes at depths corresponding to the injection interval. GPR-based modeling suggests that the observed increasing reflectivity is not due to the tracer solution, but rather to a 50% widening of the fracture. Considering prevailing uncertainties in material properties, a hydromechanical analysis suggests that such a degree of widening is feasible. This research demonstrates that field-scale in situ GPR experiments may provide constraints on fracture widening by high-pressure injection and could help to constrain field-scale elastic parameters in fractured rock.
    • Relation:
      info:eu-repo/grantAgreement//857989/EU/Marie Sklodowska-Curie/PANORAMA ITN; insu-03274403; https://insu.hal.science/insu-03274403; https://insu.hal.science/insu-03274403/document; https://insu.hal.science/insu-03274403/file/molron-2021.pdf
    • الرقم المعرف:
      10.1016/j.enggeo.2021.106249
    • Rights:
      http://creativecommons.org/licenses/by-nc-nd/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.3F81CF3F