نبذة مختصرة : In the numerical solution of large-scale eigenvalue problems, Davidson-type methods are an increasingly popular alternative to Krylov eigensolvers. The main motivation is to avoid the expensive factorizations that are often needed by Krylov solvers when the problem is generalized or interior eigenvalues are desired. In Davidson-type methods, the factorization is replaced by iterative linear solvers that can be accelerated by a smart preconditioner. Jacobi-Davidson is one of the most effective variants. However, parallel implementations of this method are not widely available, particularly for non-symmetric problems. We present a parallel implementation that has been included in SLEPc, the Scalable Library for Eigenvalue Problem Computations, and test it in the context of a highly scalable plasma turbulence simulation code. We analyze its parallel efficiency and compare it with a Krylov-Schur eigensolver. © 2011 John Wiley and Sons, Ltd. ; The authors are indebted to Florian Merz for providing us with the test cases and for his useful suggestions. The authors acknowledge the computer resources provided by the Barcelona Supercomputing Center (BSC). This work was supported by the Spanish Ministerio de Ciencia e Innovacion under project TIN2009-07519. ; Romero Alcalde, E.; Román Moltó, JE. (2011). Computing subdominant unstable modes of turbulent plasma with a parallel Jacobi-Davidson eigensolver. Concurrency and Computation: Practice and Experience. 23:2179-2191. https://doi.org/10.1002/cpe.1740 ; S ; 2179 ; 2191 ; 23 ; Hochstenbach, M. E., & Notay, Y. (2009). Controlling Inner Iterations in the Jacobi–Davidson Method. SIAM Journal on Matrix Analysis and Applications, 31(2), 460-477. doi:10.1137/080732110 ; Heuveline, V., Philippe, B., & Sadkane, M. (1997). Numerical Algorithms, 16(1), 55-75. doi:10.1023/a:1019126827697 ; Arbenz, P., Bečka, M., Geus, R., Hetmaniuk, U., & Mengotti, T. (2006). On a parallel multilevel preconditioned Maxwell eigensolver. Parallel Computing, 32(2), 157-165. ...
No Comments.