Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

High-sensitivity AC-charge detection with a MHz-frequency fluxonium qubit

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire Kastler Brossel (LKB (Jussieu)); École normale supérieure - Paris (ENS-PSL); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS); QUANTum Information Circuits (QUANTIC); Mines Paris - PSL (École nationale supérieure des mines de Paris); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Sorbonne Université (SU)-Inria de Paris; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de physique de l'ENS - ENS Paris (LPENS); Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL; Université Paris Sciences et Lettres (PSL); Laboratoire de physique de l'ENS - ENS Paris (LPENS); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL); Quantronics Group (QUANTRONICS); Service de physique de l'état condensé (SPEC - UMR3680); Institut Rayonnement Matière de Saclay (DRF) (IRAMIS); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (DRF) (IRAMIS); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS); Centre Automatique et Systèmes (CAS); CryoParis DIM Sirteq Ile-de-France; HyQuTech Emergence Sorbonne Université; Quantum Information Center Sorbonne (QICS) PhD program; ANR-22-PETQ-0006,NISQ2LSQ,From NISQ to LSQ: Bosonic and LDPC codes(2022); ANR-18-JSTQ-0002,QFilters,Contrôle d'un oscillateur optomécanique avec un filtre quantique(2018); ANR-21-CE47-0011,MecaFlux,Control quantique d'un résonateur mécanique ultra-cohérent à l'aide d'un qubit fluxonium(2021); European Project: 101042315,INGENIOUS; European Project: 851740,H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC),10.3030/851740,ECLIPSE(2020)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2023
    • Collection:
      MINES ParisTech: Archive ouverte / Open Archive (HAL)
    • نبذة مختصرة :
      Owing to their strong dipole moment and long coherence times, superconducting qubits have demonstrated remarkable success in hybrid quantum circuits. However, most qubit architectures are limited to the GHz frequency range, severely constraining the class of systems they can interact with. The fluxonium qubit, on the other hand, can be biased to very low frequency while being manipulated and read out with standard microwave techniques. Here, we design and operate a heavy fluxonium with an unprecedentedly low transition frequency of 1.8 MHz. We demonstrate resolved sideband cooling of the ``hot'' qubit transition with a final ground state population of 97.7 %, corresponding to an effective temperature of 23 µK. We further demonstrate coherent manipulation with coherence times T1=34 µs, T2*=39 µs, and single-shot readout of the qubit state. Importantly, by directly addressing the qubit transition with a capacitively coupled waveguide, we showcase its high sensitivity to a radio-frequency field. Through cyclic qubit preparation and interrogation, we transform this low-frequency fluxonium qubit into a frequency-resolved charge sensor. This method results in a charge sensitivity of 33 µe/sqrt(Hz), or an energy sensitivity (in joules per hertz) of 2.8 hbar. This method rivals state-of-the-art transport-based devices, while maintaining inherent insensitivity to DC charge noise. The high charge sensitivity combined with large capacitive shunt unlocks new avenues for exploring quantum phenomena in the 1--10 MHz range, such as the strong-coupling regime with a resonant macroscopic mechanical resonator.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2307.14329; info:eu-repo/grantAgreement//101042315/EU/Single microwave photon detection for hybrid quantum information processing and quantum enhanced sensing/INGENIOUS; info:eu-repo/grantAgreement//851740/EU/Exotic superconducting CIrcuits to Probe and protect quantum States of light and mattEr/ECLIPSE; hal-04169999; https://hal.science/hal-04169999; https://hal.science/hal-04169999/document; https://hal.science/hal-04169999/file/main.pdf; ARXIV: 2307.14329
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.3CDD8B7C