Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

An algebraic version of the Cantor-Bernstein-Schröder theorem

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Collection:
      Czech Academy of Sciences: dKNAV / Knihovna Akademie věd České Republiky
    • الموضوع:
    • نبذة مختصرة :
      The Cantor-Bernstein-Schröder theorem of the set theory was generalized by Sikorski and Tarski to $\sigma $-complete boolean algebras, and recently by several authors to other algebraic structures. In this paper we expose an abstract version which is applicable to algebras with an underlying lattice structure and such that the central elements of this lattice determine a direct decomposition of the algebra. Necessary and sufficient conditions for the validity of the Cantor-Bernstein-Schröder theorem for these algebras are given. These results are applied to obtain versions of the Cantor-Bernstein-Schröder theorem for $\sigma $-complete orthomodular lattices, Stone algebras, $BL$-algebras, $MV$-algebras, pseudo $MV$-algebras, Łukasiewicz and Post algebras of order $n$.
    • File Description:
      média; svazek
    • Relation:
      https://kramerius.lib.cas.cz/view/uuid:bd786251-8b53-4bee-bc78-338392bc408b
    • الدخول الالكتروني :
      https://kramerius.lib.cas.cz/view/uuid:bd786251-8b53-4bee-bc78-338392bc408b
    • Rights:
      policy:public
    • الرقم المعرف:
      edsbas.3CB154AA