Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Matching Detections to Events in Time Series

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Centro Federal de Educação Tecnológica Celso Suckow da Fonseca Rio de Janeiro (CEFET/RJ); Scientific Data Management (ZENITH); Inria Sophia Antipolis - Méditerranée (CRISAM); Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM); Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM); Universidade Federal do Rio de Janeiro Brasil = Federal University of Rio de Janeiro Brazil = Université fédérale de Rio de Janeiro Brésil (UFRJ); Sociedade Brasileira de Computação (SBC); SBC; Inria associated team HPPDASC
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2024
    • Collection:
      Université de Montpellier: HAL
    • الموضوع:
    • نبذة مختصرة :
      International audience ; SoftED metrics introduce a soft evaluation of event detection methods in time series, incorporating fuzzy logic concepts to provide temporal tolerance in detections. However, these metrics face challenges associating detections with events, especially in cases with multiple associations between detections and events. In this work, we propose structuring this association problem within the graph theory paradigm, approaching it as a bipartite graph matching problem. For this, the Hungarian algorithm is employed to solve the association problem. The results demonstrate the effectiveness of the proposed approach, highlighting the impact of improvements in the associations between detections and events.
    • الدخول الالكتروني :
      https://hal-lirmm.ccsd.cnrs.fr/lirmm-04683212
      https://hal-lirmm.ccsd.cnrs.fr/lirmm-04683212v1/document
      https://hal-lirmm.ccsd.cnrs.fr/lirmm-04683212v1/file/2024_07_SBBD_XSofted.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.3C2C4FA9