Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

The Statistical Theory of the Angiogenesis Equations

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Springer
    • الموضوع:
      2024
    • Collection:
      Universidad Carlos III de Madrid: e-Archivo
    • نبذة مختصرة :
      Angiogenesis is a multiscale process by which a primary blood vessel issues secondary vessel sprouts that reach regions lacking oxygen. Angiogenesis can be a natural process of organ growth and development or a pathological one induced by a cancerous tumor. A mean-field approximation for a stochastic model of angiogenesis consists of a partial differential equation (PDE) for the density of active vessel tips. Addition of Gaussian and jump noise terms to this equation produces a stochastic PDE that defines an infinite-dimensional Lévy process and is the basis of a statistical theory of angiogenesis. The associated functional equation has been solved and the invariant measure obtained. The results of this theory are compared to direct numerical simulations of the underlying angiogenesis model. The invariant measure and the moments are functions of a Korteweg–de Vries-like soliton, which approximates the deterministic density of active vessel tips.
    • ISSN:
      0938-8974
    • Relation:
      Birnir, B., Bonilla, L., Carretero, M. et al. The Statistical Theory of the Angiogenesis Equations. J Nonlinear Sci 34, 29 (2024); http://hdl.handle.net/10016/39631; https://doi.org/10.1007/s00332-023-10006-2; 29; JOURNAL OF NONLINEAR SCIENCE; 34; AR/0000034127
    • الرقم المعرف:
      10.1007/s00332-023-10006-2
    • Rights:
      © The Author(s) 2024 ; Atribución 3.0 España ; http://creativecommons.org/licenses/by/3.0/es/ ; open access
    • الرقم المعرف:
      edsbas.3B18C1F9