Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Sommes de Gál et applications

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)); Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité); Institut Élie Cartan de Lorraine (IECL); Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
    • بيانات النشر:
      CCSD
      London Mathematical Society
    • الموضوع:
      2019
    • Collection:
      Université de Lorraine: HAL
    • نبذة مختصرة :
      International audience ; We evaluate the asymptotic size of various sums of Gál type, in particular$$S( \M):=\sum_{m,n\in\M} \sqrt{(m,n) \over [m,n]},$$where $\M$ is a finite set of integers.Elaborating on methods recently developed by Bondarenko and Seip, we obtain an asymptotic formula for $$\log\Big(\sup_{|\M|= N}{S( \M)/N}\Big)$$and derive new lower bounds for localized extreme values of the Riemann zeta-function, for extremal values of some Dirichlet $L$-functions at $s=\dm$, and for large character sums.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/1804.01629; ARXIV: 1804.01629
    • الرقم المعرف:
      10.1112/plms.12224
    • الدخول الالكتروني :
      https://hal.science/hal-02890627
      https://hal.science/hal-02890627v1/document
      https://hal.science/hal-02890627v1/file/1804.01629v8.pdf
      https://doi.org/10.1112/plms.12224
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.3B12D089