Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A Random Matrix Approach to Low-Multilinear-Rank Tensor Approximation

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Performance analysis and optimization of LARge Infrastructures and Systems (POLARIS); Inria Grenoble - Rhône-Alpes; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Grenoble (LIG); Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP); Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP); Université Grenoble Alpes (UGA); GIPSA Pôle Géométrie, Apprentissage, Information et Algorithmes (GIPSA-GAIA); Grenoble Images Parole Signal Automatique (GIPSA-lab); Pôle d'ingénierie multidisciplinaire du LIG (PIMLIG); Laboratoire d'Informatique de Grenoble (LIG)
    • بيانات النشر:
      CCSD
      Microtome Publishing
    • الموضوع:
      2025
    • Collection:
      Université Grenoble Alpes: HAL
    • نبذة مختصرة :
      International audience ; This work presents a comprehensive understanding of the estimation of a planted low-rank signal from a general spiked tensor model near the computational threshold. Relying on standard tools from the theory of large random matrices, we characterize the large-dimensional spectral behavior of the unfoldings of the data tensor and exhibit relevant signal-to-noise ratios governing the detectability of the principal directions of the signal. These results allow to accurately predict the reconstruction performance of truncated multilinear SVD (MLSVD) in the non-trivial regime. This is particularly important since it serves as an initialization of the higher-order orthogonal iteration (HOOI) scheme, whose convergence to the best low-multilinear-rank approximation depends entirely on its initialization. We give a sufficient condition for the convergence of HOOI and show that the number of iterations before convergence tends to 1 in the large-dimensional limit.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2402.03169; ARXIV: 2402.03169
    • الدخول الالكتروني :
      https://hal.science/hal-04673321
      https://hal.science/hal-04673321v2/document
      https://hal.science/hal-04673321v2/file/2402.03169v3.pdf
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.3A2989E7